Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-19

Question Statement

Evaluate the integral:

0π3cos2θsinθ,dθ\int_{0}^{\frac{\pi}{3}} \cos^2 \theta \sin \theta , d\theta

Background and Explanation

To solve this integral, we use a substitution method. The integral contains both cos2θ\cos^2 \theta and sinθ\sin \theta, which suggests we can make a substitution to simplify the expression. Specifically, we’ll use a substitution to eliminate the product of trigonometric functions and solve for the integral step by step.


Solution

Start by recognizing that the integral involves a product of cos2θ\cos^2 \theta and sinθ\sin \theta. We can use substitution to simplify the integral.

  1. Substitute: Let u=cosθu = \cos \theta. Then, the derivative of uu with respect to θ\theta is du=sinθ,dθdu = -\sin \theta , d\theta.

    This transforms the integral as follows:

0π3cos2θsinθ,dθ=0π3cos2θ(sinθ),dθ \int_{0}^{\frac{\pi}{3}} \cos^2 \theta \sin \theta , d\theta = - \int_{0}^{\frac{\pi}{3}} \cos^2 \theta (-\sin \theta) , d\theta

This simplifies to:

=0π3u2,du = - \int_{0}^{\frac{\pi}{3}} u^2 , du
  1. Change the limits: When θ=0\theta = 0, u=cos0=1u = \cos 0 = 1, and when θ=π3\theta = \frac{\pi}{3}, u=cosπ3=12u = \cos \frac{\pi}{3} = \frac{1}{2}. So, the limits of integration change from 00 to π3\frac{\pi}{3} for θ\theta, to 11 to 12\frac{1}{2} for uu.

  2. Integrate: Now, we integrate u2u^2 with respect to uu:

u2,du=u33 \int u^2 , du = \frac{u^3}{3}

Thus, the integral becomes:

[u33]112 - \left[ \frac{u^3}{3} \right]_{1}^{\frac{1}{2}}
  1. Evaluate the limits: Substitute the limits into the result:
=[(12)3(1)33] = - \left[ \frac{\left( \frac{1}{2} \right)^3 - (1)^3}{3} \right]

Simplify the expression:

=[1813]=13[181] = - \left[ \frac{\frac{1}{8} - 1}{3} \right] = - \frac{1}{3} \left[ \frac{1}{8} - 1 \right] =13[188]=13×78 = - \frac{1}{3} \left[ \frac{1 - 8}{8} \right] = - \frac{1}{3} \times \frac{-7}{8}
  1. Final Answer: Simplifying this, we get:
=724 = \frac{7}{24}

Key Formulas or Methods Used

  • Substitution: Let u=cosθu = \cos \theta, so du=sinθ,dθdu = -\sin \theta , d\theta.
  • Integral of a power: u2,du=u33\int u^2 , du = \frac{u^3}{3}.

Summary of Steps

  1. Use the substitution u=cosθu = \cos \theta, and convert the integral.
  2. Change the limits of integration according to u=cosθu = \cos \theta.
  3. Integrate u2u^2 with respect to uu.
  4. Substitute the limits into the integral and simplify.
  5. The final answer is:
724\frac{7}{24}