Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-20

Question Statement

Evaluate the integral:

0π4(1+cos2θ)tan2θ,dθ\int_{0}^{\frac{\pi}{4}}\left(1 + \cos^2 \theta\right) \tan^2 \theta , d\theta

Background and Explanation

This problem involves integrating a trigonometric expression with both tan2θ\tan^2 \theta and cos2θ\cos^2 \theta. To solve it, we can break the integral into simpler components by applying trigonometric identities and methods such as the secant identity and the double angle identity. This will allow us to reduce the complexity of the integral step by step.


Solution

We will break down the integral into manageable parts:

  1. Split the integral: Start by splitting the original integral into two parts:
0π4(1+cos2θ)tan2θ,dθ \int_{0}^{\frac{\pi}{4}} \left(1 + \cos^2 \theta \right) \tan^2 \theta , d\theta

This becomes:

0π4tan2θ,dθ+0π4cos2θsin2θcos2θ,dθ \int_{0}^{\frac{\pi}{4}} \tan^2 \theta , d\theta + \int_{0}^{\frac{\pi}{4}} \cos^2 \theta \cdot \frac{\sin^2 \theta}{\cos^2 \theta} , d\theta
  1. Simplify using identities: Using the identity tan2θ=sec2θ1\tan^2 \theta = \sec^2 \theta - 1, the second integral becomes:
0π4(sec2θ1),dθ+0π4sin2θ,dθ \int_{0}^{\frac{\pi}{4}} (\sec^2 \theta - 1) , d\theta + \int_{0}^{\frac{\pi}{4}} \sin^2 \theta , d\theta

Now, the integral is split into three parts:

0π4sec2θ,dθ0π41,dθ+120π42sin2θ,dθ \int_{0}^{\frac{\pi}{4}} \sec^2 \theta , d\theta - \int_{0}^{\frac{\pi}{4}} 1 , d\theta + \frac{1}{2} \int_{0}^{\frac{\pi}{4}} 2 \sin^2 \theta , d\theta
  1. Solve the first integral: The integral of sec2θ\sec^2 \theta is straightforward:
sec2θ,dθ=tanθ \int \sec^2 \theta , d\theta = \tan \theta

So we have:

tanθ0π4 \tan \theta \Big|_0^{\frac{\pi}{4}}

Evaluating:

tanπ4tan0=10=1 \tan \frac{\pi}{4} - \tan 0 = 1 - 0 = 1
  1. Solve the second integral: The integral of 11 is just:
1,dθ=θ \int 1 , d\theta = \theta

So:

θ0π4=π40=π4 \theta \Big|_0^{\frac{\pi}{4}} = \frac{\pi}{4} - 0 = \frac{\pi}{4}
  1. Solve the third integral: The third part requires using the identity for sin2θ\sin^2 \theta, which is:
sin2θ=1cos2θ2 \sin^2 \theta = \frac{1 - \cos 2\theta}{2}

Substituting this in:

120π4(1cos2θ),dθ \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos 2\theta) , d\theta

This splits into two simpler integrals:

12(0π41,dθ0π4cos2θ,dθ) \frac{1}{2} \left( \int_{0}^{\frac{\pi}{4}} 1 , d\theta - \int_{0}^{\frac{\pi}{4}} \cos 2\theta , d\theta \right)

The first integral is:

1,dθ=θ0π4=π4 \int 1 , d\theta = \theta \Big|_0^{\frac{\pi}{4}} = \frac{\pi}{4}

The second integral requires the antiderivative of cos2θ\cos 2\theta:

cos2θ,dθ=sin2θ2 \int \cos 2\theta , d\theta = \frac{\sin 2\theta}{2}

So:

12(π4sin2θ20π4) \frac{1}{2} \left( \frac{\pi}{4} - \frac{\sin 2\theta}{2} \Big|_0^{\frac{\pi}{4}} \right)

Evaluating sin2θ\sin 2\theta at the limits:

sin2×π4=sinπ2=1andsin0=0 \sin 2 \times \frac{\pi}{4} = \sin \frac{\pi}{2} = 1 \quad \text{and} \quad \sin 0 = 0

Therefore:

12(π412) \frac{1}{2} \left( \frac{\pi}{4} - \frac{1}{2} \right)

Simplifying:

=12(π412)=12×π24=π28 = \frac{1}{2} \left( \frac{\pi}{4} - \frac{1}{2} \right) = \frac{1}{2} \times \frac{\pi - 2}{4} = \frac{\pi - 2}{8}
  1. Final result: Now, combine all the results:
1π4+π28 1 - \frac{\pi}{4} + \frac{\pi - 2}{8}

Simplifying:

=1π4+π828=1π828=34π8 = 1 - \frac{\pi}{4} + \frac{\pi}{8} - \frac{2}{8} = 1 - \frac{\pi}{8} - \frac{2}{8} = \frac{3}{4} - \frac{\pi}{8}

Key Formulas or Methods Used

  • Identity for tangent: tan2θ=sec2θ1\tan^2 \theta = \sec^2 \theta - 1
  • Double angle identity: sin2θ=1cos2θ2\sin^2 \theta = \frac{1 - \cos 2\theta}{2}
  • Standard integrals:
    • sec2θ,dθ=tanθ\int \sec^2 \theta , d\theta = \tan \theta
    • cos2θ,dθ=sin2θ2\int \cos 2\theta , d\theta = \frac{\sin 2\theta}{2}
    • 1,dθ=θ\int 1 , d\theta = \theta

Summary of Steps

  1. Split the integral into two parts using trigonometric identities.
  2. Solve sec2θ,dθ\int \sec^2 \theta , d\theta, 1,dθ\int 1 , d\theta, and sin2θ,dθ\int \sin^2 \theta , d\theta.
  3. Simplify the integrals using known formulas and evaluate the limits.
  4. Combine the results to find the final value:
34π8\frac{3}{4} - \frac{\pi}{8}