Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-23

Question Statement

Evaluate the following integral:

∫181(x13+2)2x23,dx\int_{\frac{1}{8}}^{1} \frac{\left(x^{\frac{1}{3}} + 2\right)^2}{x^{\frac{2}{3}}} , dx

Background and Explanation

This integral involves a rational expression with powers of xx and requires a substitution to simplify the integration process. To solve this, we need to:

  • Expand the integrand: Simplify the expression inside the integral.
  • Apply substitution: Use the cube root property and simplify the resulting terms.
  • Integrate: Follow basic power rule integration techniques.

Solution

Step 1: Expand the numerator

We begin by expanding the expression in the numerator, (x13+2)2(x^{\frac{1}{3}} + 2)^2:

(x13+2)2=x23+4x13+4(x^{\frac{1}{3}} + 2)^2 = x^{\frac{2}{3}} + 4x^{\frac{1}{3}} + 4

So the integral becomes:

∫181x23+4x13+4x23,dx\int_{\frac{1}{8}}^{1} \frac{x^{\frac{2}{3}} + 4x^{\frac{1}{3}} + 4}{x^{\frac{2}{3}}} , dx

Step 2: Simplify the integrand

Now, divide each term in the numerator by x23x^{\frac{2}{3}}:

x23x23+4x13x23+4x23\frac{x^{\frac{2}{3}}}{x^{\frac{2}{3}}} + \frac{4x^{\frac{1}{3}}}{x^{\frac{2}{3}}} + \frac{4}{x^{\frac{2}{3}}}

This simplifies to:

1+4xβˆ’13+4xβˆ’231 + 4x^{-\frac{1}{3}} + 4x^{-\frac{2}{3}}

Thus, the integral becomes:

∫181(1+4xβˆ’13+4xβˆ’23),dx\int_{\frac{1}{8}}^{1} \left(1 + 4x^{-\frac{1}{3}} + 4x^{-\frac{2}{3}}\right) , dx

Step 3: Integrate each term

We can now integrate each term separately:

  • First term: ∫1,dx=x\int 1 , dx = x
  • Second term: ∫4xβˆ’13,dx=4Γ—x2323=6x23\int 4x^{-\frac{1}{3}} , dx = 4 \times \frac{x^{\frac{2}{3}}}{\frac{2}{3}} = 6x^{\frac{2}{3}}
  • Third term: ∫4xβˆ’23,dx=4Γ—x1313=12x13\int 4x^{-\frac{2}{3}} , dx = 4 \times \frac{x^{\frac{1}{3}}}{\frac{1}{3}} = 12x^{\frac{1}{3}}

Thus, the integral becomes:

[x+6x23+12x13]181\left[ x + 6x^{\frac{2}{3}} + 12x^{\frac{1}{3}} \right]_{\frac{1}{8}}^{1}

Step 4: Evaluate the definite integral

Now, we evaluate the expression at the limits x=1x = 1 and x=18x = \frac{1}{8}.

  • When x=1x = 1:
1+6(1)23+12(1)13=1+6+12=19 1 + 6(1)^{\frac{2}{3}} + 12(1)^{\frac{1}{3}} = 1 + 6 + 12 = 19
  • When x=18x = \frac{1}{8}: First, calculate the cube root:
(18)13=12 \left(\frac{1}{8}\right)^{\frac{1}{3}} = \frac{1}{2}

Now, substitute into the expression:

18+6Γ—(18)23+12Γ—12 \frac{1}{8} + 6 \times \left(\frac{1}{8}\right)^{\frac{2}{3}} + 12 \times \frac{1}{2}

We need (18)23\left(\frac{1}{8}\right)^{\frac{2}{3}}, which is 14\frac{1}{4}. So:

18+6Γ—14+12Γ—12=18+32+6=18+128+488=618 \frac{1}{8} + 6 \times \frac{1}{4} + 12 \times \frac{1}{2} = \frac{1}{8} + \frac{3}{2} + 6 = \frac{1}{8} + \frac{12}{8} + \frac{48}{8} = \frac{61}{8}

Step 5: Final result

Subtract the two results:

19βˆ’618=1528βˆ’618=91819 - \frac{61}{8} = \frac{152}{8} - \frac{61}{8} = \frac{91}{8}

Thus, the value of the integral is:

918\boxed{\frac{91}{8}}

Key Formulas or Methods Used

  • Power Rule for Integration: ∫xn,dx=xn+1n+1\int x^n , dx = \frac{x^{n+1}}{n+1} for nβ‰ βˆ’1n \neq -1.
  • Definite Integral: The integral is evaluated over specific limits.

Summary of Steps

  1. Expand the numerator (x13+2)2(x^{\frac{1}{3}} + 2)^2.
  2. Simplify the integrand by dividing each term by x23x^{\frac{2}{3}}.
  3. Integrate each term separately.
  4. Evaluate the definite integral at the limits x=1x = 1 and x=18x = \frac{1}{8}.
  5. Subtract the results to find the final answer: 918\frac{91}{8}.

The final answer is:

918\boxed{\frac{91}{8}}