Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-24

Question Statement

Evaluate the following definite integral:

∫13x2βˆ’2x+1,dx\int_1^3 \frac{x^2 - 2}{x + 1} , dx

Background and Explanation

This problem involves an algebraic expression inside an integral. The key steps include simplifying the integrand and breaking it down into easier terms. We will use algebraic manipulation and the properties of logarithms to solve the integral. Key concepts used:

  • Division of polynomials: Decompose the expression into simpler parts.
  • Integration of basic functions: Use basic integration rules for polynomials and logarithmic functions.

Solution

Step 1: Simplify the integrand

We start by simplifying the numerator x2βˆ’2x^2 - 2. We can rewrite this as:

x2βˆ’2=(x2βˆ’1)βˆ’1x^2 - 2 = (x^2 - 1) - 1

Thus, the integral becomes:

∫13x2βˆ’1βˆ’1x+1,dx\int_1^3 \frac{x^2 - 1 - 1}{x + 1} , dx

We can now split this into two separate integrals:

∫13x2βˆ’1x+1,dxβˆ’βˆ«131x+1,dx\int_1^3 \frac{x^2 - 1}{x + 1} , dx - \int_1^3 \frac{1}{x + 1} , dx

Step 2: Simplify further using polynomial division

The term x2βˆ’1x+1\frac{x^2 - 1}{x + 1} can be simplified by performing polynomial long division. Dividing x2βˆ’1x^2 - 1 by x+1x + 1:

  1. Divide the leading term x2x^2 by xx, which gives xx.
  2. Multiply xx by x+1x + 1, resulting in x2+xx^2 + x.
  3. Subtract this from x2βˆ’1x^2 - 1:
(x2βˆ’1)βˆ’(x2+x)=βˆ’xβˆ’1 (x^2 - 1) - (x^2 + x) = -x - 1
  1. Divide βˆ’x-x by xx, which gives βˆ’1-1.
  2. Multiply βˆ’1-1 by x+1x + 1, resulting in βˆ’xβˆ’1-x - 1.
  3. Subtract again:
(βˆ’xβˆ’1)βˆ’(βˆ’xβˆ’1)=0 (-x - 1) - (-x - 1) = 0

Thus, the division yields:

x2βˆ’1x+1=xβˆ’1\frac{x^2 - 1}{x + 1} = x - 1

So, the integral now becomes:

∫13(xβˆ’1),dxβˆ’βˆ«131x+1,dx\int_1^3 (x - 1) , dx - \int_1^3 \frac{1}{x + 1} , dx

Step 3: Integrate each term

Now, we integrate each term separately.

  • First term:
∫13(xβˆ’1),dx=∫13x,dxβˆ’βˆ«131,dx \int_1^3 (x - 1) , dx = \int_1^3 x , dx - \int_1^3 1 , dx

The integral of xx is:

∫x,dx=x22 \int x , dx = \frac{x^2}{2}

And the integral of 1 is:

∫1,dx=x \int 1 , dx = x

Evaluating from 11 to 33:

[x22]13βˆ’[x]13=(92βˆ’12)βˆ’(3βˆ’1)=82βˆ’2=4βˆ’2=2 \left[\frac{x^2}{2}\right]_1^3 - \left[x\right]_1^3 = \left(\frac{9}{2} - \frac{1}{2}\right) - (3 - 1) = \frac{8}{2} - 2 = 4 - 2 = 2
  • Second term:
∫131x+1,dx=ln⁑∣x+1∣ \int_1^3 \frac{1}{x + 1} , dx = \ln|x + 1|

Evaluating from 11 to 33:

[ln⁑(x+1)]13=ln⁑(3+1)βˆ’ln⁑(1+1)=ln⁑4βˆ’ln⁑2=ln⁑(42)=ln⁑2 \left[\ln(x + 1)\right]_1^3 = \ln(3 + 1) - \ln(1 + 1) = \ln 4 - \ln 2 = \ln \left(\frac{4}{2}\right) = \ln 2

Step 4: Combine the results

Now, combine the results of the two integrals:

2βˆ’ln⁑22 - \ln 2

Thus, the value of the integral is:

2βˆ’ln⁑2\boxed{2 - \ln 2}

Key Formulas or Methods Used

  • Polynomial Division: Used to simplify the rational expression.
  • Basic Power Rule for Integration: ∫xn,dx=xn+1n+1\int x^n , dx = \frac{x^{n+1}}{n+1} for nβ‰ βˆ’1n \neq -1.
  • Logarithmic Integration: ∫1x+1,dx=ln⁑(x+1)\int \frac{1}{x + 1} , dx = \ln(x + 1).

Summary of Steps

  1. Simplify the integrand by breaking the expression x2βˆ’2x^2 - 2 into (x2βˆ’1)βˆ’1(x^2 - 1) - 1.
  2. Perform polynomial division to simplify x2βˆ’1x+1\frac{x^2 - 1}{x + 1} to xβˆ’1x - 1.
  3. Integrate each term separately:
    • ∫(xβˆ’1),dx\int (x - 1) , dx
    • ∫1x+1,dx\int \frac{1}{x + 1} , dx
  4. Evaluate the integrals from 11 to 33.
  5. Combine the results to find the final answer: 2βˆ’ln⁑22 - \ln 2.

The final answer is:

2βˆ’ln⁑2\boxed{2 - \ln 2}