Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-25

Question Statement

Evaluate the following definite integral:

∫233x2βˆ’2x+1(xβˆ’1)(x2+1),dx\int_2^3 \frac{3x^2 - 2x + 1}{(x - 1)(x^2 + 1)} , dx

Background and Explanation

This problem requires using partial fraction decomposition to break down a complicated rational function into simpler parts that are easier to integrate. The general process involves expressing the integrand as a sum of simpler fractions, finding the values of the constants, and then integrating each term separately.


Solution

Step 1: Set up the partial fraction decomposition

We want to express the integrand:

3x2βˆ’2x+1(xβˆ’1)(x2+1)\frac{3x^2 - 2x + 1}{(x - 1)(x^2 + 1)}

as a sum of simpler fractions:

Axβˆ’1+Bx+Cx2+1\frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}

Thus, we set up the equation:

3x2βˆ’2x+1(xβˆ’1)(x2+1)=Axβˆ’1+Bx+Cx2+1\frac{3x^2 - 2x + 1}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}

Step 2: Multiply both sides by the denominator

Multiply both sides of the equation by (xβˆ’1)(x2+1)(x - 1)(x^2 + 1) to eliminate the denominators:

3x2βˆ’2x+1=A(x2+1)+(Bx+C)(xβˆ’1)3x^2 - 2x + 1 = A(x^2 + 1) + (Bx + C)(x - 1)

Step 3: Solve for the constants AA, BB, and CC

  • Substitute x=1x = 1 into the equation:
3(1)2βˆ’2(1)+1=A(12+1)+(B(1)+C)(1βˆ’1) 3(1)^2 - 2(1) + 1 = A(1^2 + 1) + (B(1) + C)(1 - 1)

This simplifies to:

3βˆ’2+1=A(2)β‡’2A=2β‡’A=1 3 - 2 + 1 = A(2) \quad \Rightarrow \quad 2A = 2 \quad \Rightarrow \quad A = 1
  • Compare coefficients of powers of xx:
    • For x2x^2:
  • For xx:

Thus, we have:

A=1,B=2,C=0A = 1, \quad B = 2, \quad C = 0

Step 4: Rewrite the integral

Now we can rewrite the integrand:

3x2βˆ’2x+1(xβˆ’1)(x2+1)=1xβˆ’1+2xx2+1\frac{3x^2 - 2x + 1}{(x - 1)(x^2 + 1)} = \frac{1}{x - 1} + \frac{2x}{x^2 + 1}

Thus, the integral becomes:

∫231xβˆ’1,dx+∫232xx2+1,dx\int_2^3 \frac{1}{x - 1} , dx + \int_2^3 \frac{2x}{x^2 + 1} , dx

Step 5: Integrate each term

  1. First integral:
∫231xβˆ’1,dx=ln⁑∣xβˆ’1∣∣23=ln⁑(3βˆ’1)βˆ’ln⁑(2βˆ’1)=ln⁑2βˆ’ln⁑1=ln⁑2 \int_2^3 \frac{1}{x - 1} , dx = \ln|x - 1| \Big|_2^3 = \ln(3 - 1) - \ln(2 - 1) = \ln 2 - \ln 1 = \ln 2
  1. Second integral:
∫232xx2+1,dx=ln⁑(x2+1)∣23=ln⁑(32+1)βˆ’ln⁑(22+1)=ln⁑10βˆ’ln⁑5 \int_2^3 \frac{2x}{x^2 + 1} , dx = \ln(x^2 + 1) \Big|_2^3 = \ln(3^2 + 1) - \ln(2^2 + 1) = \ln 10 - \ln 5

Step 6: Combine the results

Now combine the results of both integrals:

ln⁑2+ln⁑10βˆ’ln⁑5\ln 2 + \ln 10 - \ln 5

We can simplify this expression using the logarithmic property ln⁑a+ln⁑b=ln⁑(ab)\ln a + \ln b = \ln(ab):

ln⁑(25)+ln⁑10=ln⁑(25Γ—10)=ln⁑4\ln\left(\frac{2}{5}\right) + \ln 10 = \ln\left(\frac{2}{5} \times 10\right) = \ln 4

Thus, the value of the integral is:

ln⁑4\boxed{\ln 4}

Key Formulas or Methods Used

  • Partial Fraction Decomposition: Used to break down a complicated rational expression into simpler terms.
  • Logarithmic Integration:
    • ∫1xβˆ’a,dx=ln⁑∣xβˆ’a∣\int \frac{1}{x - a} , dx = \ln|x - a|
    • ∫2xx2+1,dx=ln⁑(x2+1)\int \frac{2x}{x^2 + 1} , dx = \ln(x^2 + 1)

Summary of Steps

  1. Set up the partial fraction decomposition for the integrand.
  2. Multiply both sides by (xβˆ’1)(x2+1)(x - 1)(x^2 + 1) to eliminate the denominators.
  3. Solve for constants AA, BB, and CC by substituting x=1x = 1 and comparing coefficients.
  4. Rewrite the integrand as the sum of simpler fractions.
  5. Integrate each term separately:
    • ∫1xβˆ’1,dx\int \frac{1}{x - 1} , dx
    • ∫2xx2+1,dx\int \frac{2x}{x^2 + 1} , dx
  6. Combine the results to get the final answer: ln⁑4\ln 4.

The final answer is:

ln⁑4\boxed{\ln 4}