Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-26

Question Statement

Evaluate the following definite integral:

∫0Ο€4sin⁑xβˆ’1cos⁑2x,dx\int_0^{\frac{\pi}{4}} \frac{\sin x - 1}{\cos^2 x} , dx

Background and Explanation

This problem involves integrating a rational function with trigonometric expressions. To solve it, we use trigonometric identities and the standard integration formulas for secant and tangent functions. The key concepts required are:

  • Secant and Tangent identities: sec⁑2x=1+tan⁑2x\sec^2 x = 1 + \tan^2 x, and the integration formulas:
    • ∫sec⁑2x,dx=tan⁑x\int \sec^2 x , dx = \tan x
    • ∫sec⁑xtan⁑x,dx=sec⁑x\int \sec x \tan x , dx = \sec x

Solution

Step 1: Split the integrand

We start by rewriting the given integral:

∫0Ο€4sin⁑xβˆ’1cos⁑2x,dx\int_0^{\frac{\pi}{4}} \frac{\sin x - 1}{\cos^2 x} , dx

This can be split into two terms:

∫0Ο€4(sin⁑xcos⁑2xβˆ’1cos⁑2x),dx\int_0^{\frac{\pi}{4}} \left( \frac{\sin x}{\cos^2 x} - \frac{1}{\cos^2 x} \right) , dx

This gives us:

∫0Ο€4sec⁑xtan⁑x,dxβˆ’βˆ«0Ο€4sec⁑2x,dx\int_0^{\frac{\pi}{4}} \sec x \tan x , dx - \int_0^{\frac{\pi}{4}} \sec^2 x , dx

Step 2: Integrate each term

  • First integral: The integral of sec⁑xtan⁑x\sec x \tan x is straightforward:
∫sec⁑xtan⁑x,dx=sec⁑x \int \sec x \tan x , dx = \sec x

Evaluating from 0 to Ο€4\frac{\pi}{4}:

sec⁑(Ο€4)βˆ’sec⁑(0) \sec\left( \frac{\pi}{4} \right) - \sec(0)

Since sec⁑(Ο€4)=2\sec\left( \frac{\pi}{4} \right) = \sqrt{2} and sec⁑(0)=1\sec(0) = 1, this gives:

2βˆ’1 \sqrt{2} - 1
  • Second integral: The integral of sec⁑2x\sec^2 x is:
∫sec⁑2x,dx=tan⁑x \int \sec^2 x , dx = \tan x

Evaluating from 0 to Ο€4\frac{\pi}{4}:

tan⁑(Ο€4)βˆ’tan⁑(0) \tan\left( \frac{\pi}{4} \right) - \tan(0)

Since tan⁑(Ο€4)=1\tan\left( \frac{\pi}{4} \right) = 1 and tan⁑(0)=0\tan(0) = 0, this gives:

1βˆ’0=1 1 - 0 = 1

Step 3: Combine the results

Now, we combine the results of the two integrals:

(2βˆ’1)βˆ’1=2βˆ’2\left( \sqrt{2} - 1 \right) - 1 = \sqrt{2} - 2

Thus, the value of the integral is:

2βˆ’2\boxed{\sqrt{2} - 2}

Key Formulas or Methods Used

  • Integration of secant and tangent:
    • ∫sec⁑xtan⁑x,dx=sec⁑x\int \sec x \tan x , dx = \sec x
    • ∫sec⁑2x,dx=tan⁑x\int \sec^2 x , dx = \tan x

Summary of Steps

  1. Split the integrand into two simpler terms:
∫0Ο€4sec⁑xtan⁑x,dxβˆ’βˆ«0Ο€4sec⁑2x,dx \int_0^{\frac{\pi}{4}} \sec x \tan x , dx - \int_0^{\frac{\pi}{4}} \sec^2 x , dx
  1. Integrate each term:

    • ∫sec⁑xtan⁑x,dx=sec⁑x\int \sec x \tan x , dx = \sec x
    • ∫sec⁑2x,dx=tan⁑x\int \sec^2 x , dx = \tan x
  2. Evaluate the integrals at the limits 00 and Ο€4\frac{\pi}{4}.

  3. Combine the results to get the final answer: 2βˆ’2\sqrt{2} - 2

The final answer is:

2βˆ’2\boxed{\sqrt{2} - 2}