Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-27

Question Statement

Evaluate the following definite integral:

∫0Ο€/411+sin⁑x,dx\int_{0}^{\pi / 4} \frac{1}{1 + \sin x} , dx

Background and Explanation

To solve this problem, we need to use a trigonometric identity and break down the integrand. The key concepts include:

  • Secant and Tangent functions and their integration formulas.
  • The identity:
1βˆ’sin⁑2x=cos⁑2x 1 - \sin^2 x = \cos^2 x

This will help us manipulate the given expression to a form that we can easily integrate.


Solution

Step 1: Multiply by a conjugate

To simplify the integrand, we multiply both the numerator and denominator by the conjugate of the denominator:

11+sin⁑xΓ—1βˆ’sin⁑x1βˆ’sin⁑x\frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x}

This gives:

∫0Ο€/41βˆ’sin⁑x(1βˆ’sin⁑2x),dx\int_{0}^{\pi / 4} \frac{1 - \sin x}{(1 - \sin^2 x)} , dx

Using the identity 1βˆ’sin⁑2x=cos⁑2x1 - \sin^2 x = \cos^2 x, we rewrite the denominator:

∫0Ο€/41βˆ’sin⁑xcos⁑2x,dx\int_{0}^{\pi / 4} \frac{1 - \sin x}{\cos^2 x} , dx

Step 2: Split the integrand

Now, we split the integrand into two separate terms:

∫0Ο€/41cos⁑2x,dxβˆ’βˆ«0Ο€/4sin⁑xcos⁑2x,dx\int_{0}^{\pi / 4} \frac{1}{\cos^2 x} , dx - \int_{0}^{\pi / 4} \frac{\sin x}{\cos^2 x} , dx

This simplifies to:

∫0Ο€/4sec⁑2x,dxβˆ’βˆ«0Ο€/4sec⁑xtan⁑x,dx\int_{0}^{\pi / 4} \sec^2 x , dx - \int_{0}^{\pi / 4} \sec x \tan x , dx

Step 3: Integrate each term

  • First integral: The integral of sec⁑2x\sec^2 x is:
∫sec⁑2x,dx=tan⁑x \int \sec^2 x , dx = \tan x

Evaluating from 0 to Ο€4\frac{\pi}{4}:

tan⁑(Ο€4)βˆ’tan⁑(0) \tan\left(\frac{\pi}{4}\right) - \tan(0)

Since tan⁑(Ο€4)=1\tan\left(\frac{\pi}{4}\right) = 1 and tan⁑(0)=0\tan(0) = 0, this gives:

1βˆ’0=1 1 - 0 = 1
  • Second integral: The integral of sec⁑xtan⁑x\sec x \tan x is:
∫sec⁑xtan⁑x,dx=sec⁑x \int \sec x \tan x , dx = \sec x

Evaluating from 0 to Ο€4\frac{\pi}{4}:

sec⁑(Ο€4)βˆ’sec⁑(0) \sec\left(\frac{\pi}{4}\right) - \sec(0)

Since sec⁑(Ο€4)=2\sec\left(\frac{\pi}{4}\right) = \sqrt{2} and sec⁑(0)=1\sec(0) = 1, this gives:

2βˆ’1 \sqrt{2} - 1

Step 4: Combine the results

Now, we combine the results from both integrals:

1βˆ’(2βˆ’1)=1βˆ’2+1=2βˆ’21 - (\sqrt{2} - 1) = 1 - \sqrt{2} + 1 = 2 - \sqrt{2}

Thus, the value of the integral is:

2βˆ’2\boxed{2 - \sqrt{2}}

Key Formulas or Methods Used

  • Integration of secant and tangent:
    • ∫sec⁑2x,dx=tan⁑x\int \sec^2 x , dx = \tan x
    • ∫sec⁑xtan⁑x,dx=sec⁑x\int \sec x \tan x , dx = \sec x
  • Trigonometric identity:
    • 1βˆ’sin⁑2x=cos⁑2x1 - \sin^2 x = \cos^2 x

Summary of Steps

  1. Multiply the integrand by the conjugate of 1+sin⁑x1 + \sin x: 1βˆ’sin⁑xcos⁑2x\frac{1 - \sin x}{\cos^2 x}

  2. Split the integrand into two separate integrals: ∫0Ο€/4sec⁑2x,dxβˆ’βˆ«0Ο€/4sec⁑xtan⁑x,dx\int_{0}^{\pi / 4} \sec^2 x , dx - \int_{0}^{\pi / 4} \sec x \tan x , dx

  3. Integrate each term:

    • ∫sec⁑2x,dx=tan⁑x\int \sec^2 x , dx = \tan x
    • ∫sec⁑xtan⁑x,dx=sec⁑x\int \sec x \tan x , dx = \sec x
  4. Evaluate the integrals at the limits 00 and Ο€4\frac{\pi}{4}.

  5. Combine the results to get the final answer: 2βˆ’22 - \sqrt{2}

The final answer is:

2βˆ’2\boxed{2 - \sqrt{2}}