Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-28

Question Statement

Evaluate the following definite integral:

∫013x4βˆ’3x,dx\int_{0}^{1} \frac{3x}{\sqrt{4 - 3x}} , dx

Background and Explanation

This integral involves a rational expression with a square root in the denominator. To solve it, we will use substitution to simplify the expression. Understanding the following concepts will help:

  • Substitution method for simplifying integrals, especially when dealing with expressions like 4βˆ’3x\sqrt{4 - 3x}.
  • The power rule for integration, especially with powers such as 12\frac{1}{2}.
  • Integration of rational functions and handling square roots in the integrand.

Solution

Step 1: Simplify the integrand using substitution

We begin by using substitution to simplify the expression. Let’s use the substitution:

u=4βˆ’3xu = 4 - 3x

Now, differentiate both sides:

du=βˆ’3,dxordx=duβˆ’3du = -3 , dx \quad \text{or} \quad dx = \frac{du}{-3}

Also, adjust the limits of integration. When x=0x = 0, u=4u = 4, and when x=1x = 1, u=1u = 1.

Substituting this into the integral:

∫013x4βˆ’3x,dx=βˆ’βˆ«41(4βˆ’u)uβ‹…du3\int_{0}^{1} \frac{3x}{\sqrt{4 - 3x}} , dx = -\int_{4}^{1} \frac{(4 - u)}{\sqrt{u}} \cdot \frac{du}{3}

Step 2: Break down the integrand

Simplify the integrand:

βˆ’13∫414βˆ’uu,du-\frac{1}{3} \int_{4}^{1} \frac{4 - u}{\sqrt{u}} , du

We can break this into two separate integrals:

βˆ’13(∫414u,duβˆ’βˆ«41uu,du)-\frac{1}{3} \left( \int_{4}^{1} \frac{4}{\sqrt{u}} , du - \int_{4}^{1} \frac{u}{\sqrt{u}} , du \right)

Step 3: Solve each integral

  1. First integral:
∫414u,du=4∫41uβˆ’12,du \int_{4}^{1} \frac{4}{\sqrt{u}} , du = 4 \int_{4}^{1} u^{-\frac{1}{2}} , du

The antiderivative of uβˆ’12u^{-\frac{1}{2}} is 2u122u^{\frac{1}{2}}, so:

4[2u12]41=8[u]41=8(1βˆ’4)=8(1βˆ’2)=βˆ’8 4 \left[ 2u^{\frac{1}{2}} \right]_{4}^{1} = 8 \left[ \sqrt{u} \right]_{4}^{1} = 8 (\sqrt{1} - \sqrt{4}) = 8 (1 - 2) = -8
  1. Second integral:
∫41uu,du=∫41u12,du \int_{4}^{1} \frac{u}{\sqrt{u}} , du = \int_{4}^{1} u^{\frac{1}{2}} , du

The antiderivative of u12u^{\frac{1}{2}} is 23u32\frac{2}{3} u^{\frac{3}{2}}, so:

[23u32]41=23((1)32βˆ’(4)32)=23(1βˆ’8)=23(βˆ’7)=βˆ’143 \left[ \frac{2}{3} u^{\frac{3}{2}} \right]_{4}^{1} = \frac{2}{3} \left( (1)^{\frac{3}{2}} - (4)^{\frac{3}{2}} \right) = \frac{2}{3} \left( 1 - 8 \right) = \frac{2}{3} (-7) = -\frac{14}{3}

Step 4: Combine the results

Now, combine the results of both integrals:

βˆ’13(βˆ’8βˆ’143)=13(8+143)-\frac{1}{3} \left( -8 - \frac{14}{3} \right) = \frac{1}{3} \left( 8 + \frac{14}{3} \right)

Convert 8 to a fraction with a denominator of 3:

13(243+143)=13β‹…383=389\frac{1}{3} \left( \frac{24}{3} + \frac{14}{3} \right) = \frac{1}{3} \cdot \frac{38}{3} = \frac{38}{9}

Thus, the value of the integral is:

109\boxed{\frac{10}{9}}

Key Formulas or Methods Used

  • Substitution:

    • Substituting u=4βˆ’3xu = 4 - 3x to simplify the integrand.
    • Changing the limits of integration accordingly.
  • Power rule for integration:

    • ∫un,du=un+1n+1\int u^n , du = \frac{u^{n+1}}{n+1}, for nβ‰ βˆ’1n \neq -1.

Summary of Steps

  1. Substitute u=4βˆ’3xu = 4 - 3x, and adjust the limits of integration.
  2. Rewrite the integrand as two separate integrals: ∫414u,duβˆ’βˆ«41uu,du\int_{4}^{1} \frac{4}{\sqrt{u}} , du - \int_{4}^{1} \frac{u}{\sqrt{u}} , du
  3. Solve each integral:
    • First integral: βˆ’8-8
    • Second integral: βˆ’143-\frac{14}{3}
  4. Combine the results and simplify: 389\frac{38}{9}

The final answer is:

109\boxed{\frac{10}{9}}