Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-3

Question Statement

Evaluate the integral:
βˆ«βˆ’201(2xβˆ’1)2,dx\int_{-2}^{0} \frac{1}{(2x - 1)^2} , dx


Background and Explanation

This problem involves integration of a rational function. To solve such integrals, we often need to apply substitution or recognize standard integrals. In this case, we can use the standard formula for integrating a function of the form 1(ax+b)n\frac{1}{(ax + b)^n}.

The steps include:

  1. Simplifying the integral using substitution if needed.
  2. Applying the appropriate power rule for integration.
  3. Evaluating the resulting expression at the given limits.

Solution

  1. Rewrite the Integral:

    The integral is: βˆ«βˆ’201(2xβˆ’1)2,dx\int_{-2}^{0} \frac{1}{(2x - 1)^2} , dx

    First, notice that the denominator is of the form (2xβˆ’1)βˆ’2(2x - 1)^{-2}, so we can use a substitution to simplify this.

  2. Apply Substitution:

    Let: u=2xβˆ’1u = 2x - 1
    Then: du=2dxordu2=dxdu = 2 dx \quad \text{or} \quad \frac{du}{2} = dx

    Now substitute into the integral. The limits change as well:

    • When x=βˆ’2x = -2, u=2(βˆ’2)βˆ’1=βˆ’5u = 2(-2) - 1 = -5.
    • When x=0x = 0, u=2(0)βˆ’1=βˆ’1u = 2(0) - 1 = -1.

    Substituting into the integral: βˆ«βˆ’201(2xβˆ’1)2,dx=12βˆ«βˆ’5βˆ’1uβˆ’2,du\int_{-2}^{0} \frac{1}{(2x - 1)^2} , dx = \frac{1}{2} \int_{-5}^{-1} u^{-2} , du

  3. Integrate:

    Now, apply the power rule for integration: ∫uβˆ’2,du=uβˆ’1βˆ’1=βˆ’uβˆ’1\int u^{-2} , du = \frac{u^{-1}}{-1} = -u^{-1}

    Therefore: 12βˆ«βˆ’5βˆ’1uβˆ’2,du=12[βˆ’1u]βˆ’5βˆ’1\frac{1}{2} \int_{-5}^{-1} u^{-2} , du = \frac{1}{2} \left[-\frac{1}{u}\right]_{-5}^{-1}

  4. Evaluate the Integral:

    Now evaluate at the limits u=βˆ’1u = -1 and u=βˆ’5u = -5: 12[βˆ’1βˆ’1+1βˆ’5]=12[1βˆ’(βˆ’15)]\frac{1}{2} \left[-\frac{1}{-1} + \frac{1}{-5}\right] = \frac{1}{2} \left[1 - \left(-\frac{1}{5}\right)\right]

    Simplify: =12[1+15]=12Γ—65=35= \frac{1}{2} \left[1 + \frac{1}{5}\right] = \frac{1}{2} \times \frac{6}{5} = \frac{3}{5}

Thus, the value of the integral is: 35\boxed{\frac{3}{5}}


Key Formulas or Methods Used

  • Substitution method for integrals:
    u=2xβˆ’1anddu=2dxu = 2x - 1 \quad \text{and} \quad du = 2dx

  • Power rule for integration:
    ∫un,du=un+1n+1\int u^n , du = \frac{u^{n+1}}{n+1}

  • Evaluating definite integrals at the upper and lower limits.


Summary of Steps

  1. Set up the integral with substitution:
    u=2xβˆ’1anddu=2dxu = 2x - 1 \quad \text{and} \quad du = 2dx

  2. Change the limits of integration according to uu and simplify the integral:
    12βˆ«βˆ’5βˆ’1uβˆ’2,du\frac{1}{2} \int_{-5}^{-1} u^{-2} , du

  3. Apply the power rule for integration:
    12[βˆ’1u]βˆ’5βˆ’1\frac{1}{2} \left[-\frac{1}{u}\right]_{-5}^{-1}

  4. Evaluate the integral at the limits:
    12[1+15]=35\frac{1}{2} \left[1 + \frac{1}{5}\right] = \frac{3}{5}

Thus, the final result is 35\frac{3}{5}.