Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-4

Question Statement

Evaluate the integral: βˆ«βˆ’623βˆ’x,dx\int_{-6}^{2} \sqrt{3 - x} , dx


Background and Explanation

In this problem, we are tasked with integrating a square root function. To solve this, we will first use substitution and then apply the power rule for integration. The square root function 3βˆ’x\sqrt{3 - x} can be expressed as (3βˆ’x)1/2(3 - x)^{1/2}, which is easier to integrate using standard formulas.

We need to recognize that a substitution may simplify the expression for easier integration.


Solution

  1. Rewrite the Integral:

    The given integral is: βˆ«βˆ’623βˆ’x,dx\int_{-6}^{2} \sqrt{3 - x} , dx

    First, notice that the function inside the square root is (3βˆ’x)(3 - x), so we can use a substitution to simplify the integral.

  2. Apply Substitution:

    Let: u=3βˆ’xu = 3 - x
    Then: du=βˆ’dxdu = -dx

    Now substitute into the integral. The limits change accordingly:

    • When x=βˆ’6x = -6, u=3βˆ’(βˆ’6)=9u = 3 - (-6) = 9.
    • When x=2x = 2, u=3βˆ’2=1u = 3 - 2 = 1.

    The integral becomes: βˆ«βˆ’62(3βˆ’x)1/2,dx=βˆ’βˆ«91u1/2,du\int_{-6}^{2} (3 - x)^{1/2} , dx = - \int_{9}^{1} u^{1/2} , du

    The negative sign comes from du=βˆ’dxdu = -dx, which flips the limits of integration.

  3. Integrate:

    Now apply the power rule for integration. For u1/2u^{1/2}, we have: ∫u1/2,du=u3/23/2=23u3/2\int u^{1/2} , du = \frac{u^{3/2}}{3/2} = \frac{2}{3} u^{3/2}

    Therefore, the integral becomes: βˆ’[23u3/2]91- \left[ \frac{2}{3} u^{3/2} \right]_{9}^{1}

  4. Evaluate the Integral:

    Now evaluate the expression at the limits u=1u = 1 and u=9u = 9: βˆ’[23(1)3/2βˆ’23(9)3/2]- \left[ \frac{2}{3} (1)^{3/2} - \frac{2}{3} (9)^{3/2} \right]

    Simplify: =βˆ’23[1βˆ’(9)3/2]= - \frac{2}{3} \left[ 1 - (9)^{3/2} \right]

    Since 93/2=279^{3/2} = 27, we get: =βˆ’23[1βˆ’27]=βˆ’23Γ—(βˆ’26)= - \frac{2}{3} \left[ 1 - 27 \right] = - \frac{2}{3} \times (-26)

  5. Final Calculation:

    Simplify further: =523= \frac{52}{3}

Thus, the value of the integral is: 523\boxed{\frac{52}{3}}


Key Formulas or Methods Used

  • Substitution:
    u=3βˆ’xu = 3 - x, leading to du=βˆ’dxdu = -dx.

  • Power rule for integration:
    ∫un,du=un+1n+1\int u^n , du = \frac{u^{n+1}}{n+1}


Summary of Steps

  1. Set up the substitution:
    u=3βˆ’xu = 3 - x, du=βˆ’dxdu = -dx.

  2. Change the limits of integration accordingly:
    βˆ’βˆ«91u1/2,du- \int_{9}^{1} u^{1/2} , du

  3. Apply the power rule:
    βˆ’23u3/2- \frac{2}{3} u^{3/2}

  4. Evaluate the integral at the limits u=1u = 1 and u=9u = 9: βˆ’23[1βˆ’27]- \frac{2}{3} \left[ 1 - 27 \right]

  5. Simplify the final result: 523\frac{52}{3}

Thus, the final result is 523\frac{52}{3}.