Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-5

Question Statement

Evaluate the integral: ∫15(2tβˆ’1)3,dx\int_{1}^{\sqrt{5}} \sqrt{(2t - 1)^{3}} , dx


Background and Explanation

In this problem, we are tasked with integrating a function involving a square root of a cubic expression. The integrand is of the form (2tβˆ’1)3\sqrt{(2t - 1)^3}, which requires manipulation using substitution and integration techniques. We’ll use the power rule to simplify and solve this integral.

The square root function can be written as a power expression (2tβˆ’1)3/2(2t - 1)^{3/2}, and we need to adjust the expression accordingly for integration.


Solution

  1. Rewriting the Integral:

    The given integral is: ∫15(2tβˆ’1)3,dx\int_{1}^{\sqrt{5}} \sqrt{(2t - 1)^{3}} , dx

    First, simplify the square root: (2tβˆ’1)3=(2tβˆ’1)3/2\sqrt{(2t - 1)^{3}} = (2t - 1)^{3/2}

    Therefore, the integral becomes: ∫15(2tβˆ’1)3/2,dx\int_{1}^{\sqrt{5}} (2t - 1)^{3/2} , dx

  2. Introduce a Constant Factor:

    We can factor out constants to simplify the integral. Notice that 22 is a constant inside the integrand: 12∫15(2tβˆ’1)3/2β‹…2,dx\frac{1}{2} \int_{1}^{\sqrt{5}} (2t - 1)^{3/2} \cdot 2 , dx

    Now the integral becomes: 12β‹…2∫15(2tβˆ’1)3/2,dx\frac{1}{2} \cdot 2 \int_{1}^{\sqrt{5}} (2t - 1)^{3/2} , dx

    The 22β€˜s cancel out, leaving: ∫15(2tβˆ’1)3/2,dx\int_{1}^{\sqrt{5}} (2t - 1)^{3/2} , dx

  3. Apply the Power Rule for Integration:

    We can now apply the power rule for integration. The general rule is: ∫(un),du=un+1n+1\int (u^n) , du = \frac{u^{n+1}}{n+1}

    For (2tβˆ’1)3/2(2t - 1)^{3/2}, we have n=3/2n = 3/2, so the integral becomes: (2tβˆ’1)5/25/2\frac{(2t - 1)^{5/2}}{5/2}

    Therefore, we can now write: 12β‹…25[(2tβˆ’1)5/2]15\frac{1}{2} \cdot \frac{2}{5} \left[ (2t - 1)^{5/2} \right]_{1}^{\sqrt{5}}

  4. Evaluate the Integral at the Limits:

    Now we evaluate the expression at the limits t=1t = 1 and t=5t = \sqrt{5}: 15[(25βˆ’1)5/2βˆ’(2(1)βˆ’1)5/2]\frac{1}{5} \left[ (2\sqrt{5} - 1)^{5/2} - (2(1) - 1)^{5/2} \right]

    Simplify each term:

    • 25βˆ’1=25βˆ’12\sqrt{5} - 1 = 2\sqrt{5} - 1
    • 2(1)βˆ’1=12(1) - 1 = 1

    So we get: 15[(25βˆ’1)5/2βˆ’15/2]\frac{1}{5} \left[ (2\sqrt{5} - 1)^{5/2} - 1^{5/2} \right]

  5. Final Expression:

    Therefore, the final result is: 15[(25βˆ’1)5/2βˆ’1]\frac{1}{5} \left[ (2\sqrt{5} - 1)^{5/2} - 1 \right]

Thus, the value of the integral is: 15[(25βˆ’1)5/2βˆ’1]\boxed{\frac{1}{5} \left[ (2\sqrt{5} - 1)^{5/2} - 1 \right]}


Key Formulas or Methods Used

  • Power Rule for Integration:
    ∫un,du=un+1n+1\int u^n , du = \frac{u^{n+1}}{n+1}

Summary of Steps

  1. Rewrite the integrand as (2tβˆ’1)3/2(2t - 1)^{3/2}.
  2. Factor out constants and simplify the integral.
  3. Apply the power rule for integration: ∫(2tβˆ’1)3/2,dx=25(2tβˆ’1)5/2\int (2t - 1)^{3/2} , dx = \frac{2}{5} (2t - 1)^{5/2}
  4. Evaluate the integral at the limits t=1t = 1 and t=5t = \sqrt{5}: 15[(25βˆ’1)5/2βˆ’1]\frac{1}{5} \left[ (2\sqrt{5} - 1)^{5/2} - 1 \right]
  5. The final result is: 15[(25βˆ’1)5/2βˆ’1]\boxed{\frac{1}{5} \left[ (2\sqrt{5} - 1)^{5/2} - 1 \right]}