Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.6 Q-6

Question Statement

Evaluate the integral: ∫25xx2βˆ’1,dx\int_{2}^{\sqrt{5}} x \sqrt{x^2 - 1} , dx


Background and Explanation

This is a standard integral involving a square root of a quadratic expression. In problems like this, we often use substitution and the power rule for integration to simplify the expression.

To solve this, we will apply a standard technique for handling integrals of the form xx2βˆ’1x \sqrt{x^2 - 1}, which often involves recognizing patterns and using substitution methods.


Solution

  1. Rewriting the Integral:

    The given integral is: ∫25xx2βˆ’1,dx\int_{2}^{\sqrt{5}} x \sqrt{x^2 - 1} , dx

    We can simplify the expression by recognizing that xx2βˆ’1x \sqrt{x^2 - 1} can be handled using a substitution method, making the integral easier to solve.

  2. Substitute for Simplicity:

    First, apply the substitution u=x2βˆ’1u = x^2 - 1, so that du=2x,dxdu = 2x , dx. This will help simplify the integral.

    The limits of integration change accordingly:

    • When x=2x = 2, u=22βˆ’1=3u = 2^2 - 1 = 3
    • When x=5x = \sqrt{5}, u=(5)2βˆ’1=4u = (\sqrt{5})^2 - 1 = 4

    Therefore, the integral becomes: ∫3412u,du\int_{3}^{4} \frac{1}{2} \sqrt{u} , du

  3. Integrate Using the Power Rule:

    The integral ∫u,du\int \sqrt{u} , du is a standard integral, and we can apply the power rule for integration: ∫un,du=un+1n+1\int u^n , du = \frac{u^{n+1}}{n+1}

    For u=u1/2\sqrt{u} = u^{1/2}, we have: ∫u1/2,du=u3/23/2=23u3/2\int u^{1/2} , du = \frac{u^{3/2}}{3/2} = \frac{2}{3} u^{3/2}

  4. Evaluate the Integral:

    Now we apply the limits of integration: 12Γ—23[u3/2]34\frac{1}{2} \times \frac{2}{3} \left[ u^{3/2} \right]_{3}^{4}

    Substituting the limits: =13[(4)3/2βˆ’(3)3/2]= \frac{1}{3} \left[ (4)^{3/2} - (3)^{3/2} \right]

    Simplify the terms:

    • (4)3/2=23=8(4)^{3/2} = 2^3 = 8
    • (3)3/2=33(3)^{3/2} = 3\sqrt{3}

    Therefore, we have: =13[8βˆ’33]= \frac{1}{3} \left[ 8 - 3\sqrt{3} \right]

    The final result is: 13[8βˆ’33]\boxed{\frac{1}{3} \left[ 8 - 3\sqrt{3} \right]}


Key Formulas or Methods Used

  • Substitution Method:
    If u=x2βˆ’1u = x^2 - 1, then du=2x,dxdu = 2x , dx.

  • Power Rule for Integration:
    ∫un,du=un+1n+1\int u^n , du = \frac{u^{n+1}}{n+1}


Summary of Steps

  1. Recognize the integral xx2βˆ’1x \sqrt{x^2 - 1} and apply substitution: u=x2βˆ’1u = x^2 - 1.
  2. Change the limits of integration to match the substitution.
  3. Use the power rule to integrate:
    ∫u,du=23u3/2\int \sqrt{u} , du = \frac{2}{3} u^{3/2}
  4. Apply the limits of integration and simplify the result.
  5. The final answer is: 13[8βˆ’33]\boxed{\frac{1}{3} \left[ 8 - 3\sqrt{3} \right]}