Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.7 Q-11

Question Statement

Find the area between the x-axis and the curve y=cos⁑x2y = \cos \frac{x}{2} from x=βˆ’Ο€x = -\pi to x=Ο€x = \pi.


Background and Explanation

This problem involves finding the area under a trigonometric curve. To do this, we will:

  • Integrate the function y=cos⁑x2y = \cos \frac{x}{2} from x=βˆ’Ο€x = -\pi to x=Ο€x = \pi.
  • Recognize that the graph of cos⁑x2\cos \frac{x}{2} remains above the x-axis over this interval, simplifying the process of calculating the area.

Solution

  1. Set up the integral: We need to calculate the area under the curve y=cos⁑x2y = \cos \frac{x}{2} from x=βˆ’Ο€x = -\pi to x=Ο€x = \pi. The area is given by the integral:
Area=βˆ«βˆ’Ο€Ο€cos⁑x2,dx \text{Area} = \int_{-\pi}^{\pi} \cos \frac{x}{2} , dx
  1. Use substitution for easier integration: To solve the integral, we can simplify by applying substitution. Let:
u=x2,sodu=12,dx u = \frac{x}{2}, \quad \text{so} \quad du = \frac{1}{2} , dx

This leads to:

Area=2βˆ«βˆ’Ο€/2Ο€/2cos⁑u,du \text{Area} = 2 \int_{-\pi/2}^{\pi/2} \cos u , du

(since the limits of integration change accordingly).

  1. Integrate the function: The integral of cos⁑u\cos u is sin⁑u\sin u. So, we integrate:
Area=2[sin⁑u]βˆ’Ο€/2Ο€/2 \text{Area} = 2 \left[ \sin u \right]_{-\pi/2}^{\pi/2}
  1. Evaluate the definite integral: Now, substitute the limits:
Area=2[sin⁑π2βˆ’sin⁑(βˆ’Ο€2)] \text{Area} = 2 \left[ \sin \frac{\pi}{2} - \sin \left( -\frac{\pi}{2} \right) \right]

We know that sin⁑π2=1\sin \frac{\pi}{2} = 1 and sin⁑(βˆ’Ο€2)=βˆ’1\sin \left( -\frac{\pi}{2} \right) = -1, so:

Area=2[1βˆ’(βˆ’1)]=2Γ—2=4 \text{Area} = 2 \left[ 1 - (-1) \right] = 2 \times 2 = 4

Thus, the area under the curve is:

Area=4,squareΒ units\text{Area} = 4 , \text{square units}

Key Formulas or Methods Used

  • Substitution for integration:
u=x2,du=12dx u = \frac{x}{2}, \quad du = \frac{1}{2} dx
  • Standard integral of cosine:
∫cos⁑u,du=sin⁑u \int \cos u , du = \sin u

Summary of Steps

  1. Set up the integral for the area: βˆ«βˆ’Ο€Ο€cos⁑x2,dx\int_{-\pi}^{\pi} \cos \frac{x}{2} , dx.
  2. Apply substitution: u=x2u = \frac{x}{2}, so du=12dxdu = \frac{1}{2} dx.
  3. Simplify and solve the integral: 2βˆ«βˆ’Ο€/2Ο€/2cos⁑u,du2 \int_{-\pi/2}^{\pi/2} \cos u , du.
  4. Evaluate the definite integral: Area=4\text{Area} = 4.