Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.7 Q-12

Question Statement

Find the area between the x-axis and the curve y=sin⁑2xy = \sin 2x from x=0x = 0 to x=Ο€3x = \frac{\pi}{3}.


Background and Explanation

To solve this problem, we need to:

  • Integrate the function y=sin⁑2xy = \sin 2x over the given interval from x=0x = 0 to x=Ο€3x = \frac{\pi}{3}.
  • Recognize that the integral of sine functions is related to cosine functions, and we will use this relationship to evaluate the area.

We will use the definite integral of sin⁑2x\sin 2x to find the area under the curve, as the graph of sin⁑2x\sin 2x is above the x-axis in this interval.


Solution

  1. Set up the integral for the area: The area between the curve and the x-axis is given by the integral:
Area=∫0Ο€3sin⁑2x,dx \text{Area} = \int_{0}^{\frac{\pi}{3}} \sin 2x , dx
  1. Apply the integral of sine: The integral of sin⁑2x\sin 2x requires a constant factor for the derivative of 2x2x. We can rewrite the integral as:
Area=12∫0Ο€3βˆ’2sin⁑2x,dx \text{Area} = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} -2 \sin 2x , dx

This step ensures we account for the factor of 2 inside the sine function.

  1. Integrate the function: The integral of sin⁑2x\sin 2x is βˆ’12cos⁑2x-\frac{1}{2} \cos 2x, so:
Area=βˆ’12cos⁑2x∣0Ο€3 \text{Area} = -\frac{1}{2} \cos 2x \bigg|_0^{\frac{\pi}{3}}
  1. Evaluate the definite integral: Now substitute the upper and lower limits into the cosine function:
Area=βˆ’12[cos⁑(2Γ—Ο€3)βˆ’cos⁑(0)] \text{Area} = -\frac{1}{2} \left[ \cos \left( 2 \times \frac{\pi}{3} \right) - \cos (0) \right]

We know that cos⁑(2Ο€3)=βˆ’12\cos \left( \frac{2\pi}{3} \right) = -\frac{1}{2} and cos⁑(0)=1\cos (0) = 1, so:

Area=βˆ’12[βˆ’12βˆ’1] \text{Area} = -\frac{1}{2} \left[ -\frac{1}{2} - 1 \right]

Simplifying:

Area=βˆ’12[βˆ’1βˆ’22]=34 \text{Area} = -\frac{1}{2} \left[ \frac{-1 - 2}{2} \right] = \frac{3}{4}

Thus, the area under the curve is:

Area=34,squareΒ units\text{Area} = \frac{3}{4} , \text{square units}

Key Formulas or Methods Used

  • Integral of sine function:
∫sin⁑2x,dx=βˆ’12cos⁑2x \int \sin 2x , dx = -\frac{1}{2} \cos 2x
  • Definite integral:
∫abf(x),dx=F(b)βˆ’F(a) \int_{a}^{b} f(x) , dx = F(b) - F(a)

Summary of Steps

  1. Set up the integral: ∫0Ο€3sin⁑2x,dx\int_{0}^{\frac{\pi}{3}} \sin 2x , dx.
  2. Use the factor 12\frac{1}{2} to account for the derivative of 2x2x.
  3. Integrate: Area=βˆ’12cos⁑2x\text{Area} = -\frac{1}{2} \cos 2x.
  4. Substitute the limits of integration: Area=34\text{Area} = \frac{3}{4}.