Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.7 Q-13

Question Statement

Find the area between the xx-axis and the curve y=2axx2y = \sqrt{2 a x - x^2} when a>0a > 0.


Background and Explanation

To solve this problem, we need to calculate the area between the curve and the xx-axis for the given equation. The key concepts involved are:

  1. Curve Intersection: Identifying the points where the curve intersects the xx-axis.
  2. Definite Integration: Using integration to find the area under the curve over the specified interval.
  3. Trigonometric Substitution: Simplifying the integral using trigonometric identities for easier calculation.

Solution

Step 1: Finding the points of intersection

We first find the xx-values where the curve intersects the xx-axis, i.e., when y=0y = 0.

Given the equation:

y=2axx2y = \sqrt{2 a x - x^2}

Set y=0y = 0:

2axx2=0\sqrt{2 a x - x^2} = 0

Squaring both sides:

2axx2=02 a x - x^2 = 0

Factorizing:

x(2ax)=0x(2a - x) = 0

Thus, the curve intersects the xx-axis at x=0x = 0 and x=2ax = 2a.

Step 2: Setting up the integral

The curve is above the xx-axis between x=0x = 0 and x=2ax = 2a. Therefore, we need to integrate the function y=2axx2y = \sqrt{2 a x - x^2} from x=0x = 0 to x=2ax = 2a:

Area=02a2axx2,dx\text{Area} = \int_0^{2a} \sqrt{2 a x - x^2} , dx

Step 3: Simplifying the integrand

We rewrite the integrand in a more convenient form:

2axx2=a2(ax)2\sqrt{2 a x - x^2} = \sqrt{a^2 - (a - x)^2}

Thus, the integral becomes:

02aa2(ax)2,dx\int_0^{2a} \sqrt{a^2 - (a - x)^2} , dx

Step 4: Trigonometric substitution

Let ax=asinθa - x = a \sin \theta, which implies:

dx=acosθ,dθdx = -a \cos \theta , d\theta

When x=0x = 0, θ=π2\theta = \frac{\pi}{2}, and when x=2ax = 2a, θ=π2\theta = -\frac{\pi}{2}.

Substituting into the integral:

π2π2a2a2sin2θ(acosθ),dθ\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \sqrt{a^2 - a^2 \sin^2 \theta} \cdot (-a \cos \theta) , d\theta

Simplifying the square root:

a2cos2θ=acosθ\sqrt{a^2 \cos^2 \theta} = a \cos \theta

Thus, the integral becomes:

π2π2acosθacosθ,dθ=a2π2π2cos2θ,dθ\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} a \cos \theta \cdot a \cos \theta , d\theta = a^2 \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \cos^2 \theta , d\theta

Step 5: Solving the integral

Use the identity cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2}:

a2π2π21+cos2θ2,dθa^2 \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} , d\theta

This separates into two integrals:

a22(π2π21,dθ+π2π2cos2θ,dθ)\frac{a^2}{2} \left( \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} 1 , d\theta + \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \cos 2\theta , d\theta \right)

The first integral evaluates to:

π2π21,dθ=π\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} 1 , d\theta = \pi

The second integral is:

π2π2cos2θ,dθ=0\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \cos 2\theta , d\theta = 0

since sin2θ\sin 2\theta is zero at both limits.

Thus, the area becomes:

a22π=π2a2\frac{a^2}{2} \cdot \pi = \frac{\pi}{2} a^2

Key Formulas or Methods Used

  • Definite Integral: Used to calculate the area under the curve: Area=abf(x),dx\text{Area} = \int_{a}^{b} f(x) , dx

  • Trigonometric Substitution: To simplify the integral, we used the substitution ax=asinθa - x = a \sin \theta.

  • Trigonometric Identity: cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2}


Summary of Steps

  1. Find intersection points: Set y=0y = 0 to find x=0x = 0 and x=2ax = 2a.
  2. Set up the integral: Integrate the function 2axx2\sqrt{2 a x - x^2} from x=0x = 0 to x=2ax = 2a.
  3. Simplify the integrand: Express 2axx2\sqrt{2 a x - x^2} as a2(ax)2\sqrt{a^2 - (a - x)^2}.
  4. Apply trigonometric substitution: Let ax=asinθa - x = a \sin \theta to simplify the integral.
  5. Solve the integral: Use the identity cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2} and compute the result.
  6. Final result: The area is π2a2\frac{\pi}{2} a^2 square units.