Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.7 Q-2

Question Statement

Find the area above the xx-axis and under the curve y=5βˆ’x2y = 5 - x^2 from x=βˆ’1x = -1 to x=2x = 2.


Background and Explanation

To solve this problem, we will use definite integration to calculate the area under the curve y=5βˆ’x2y = 5 - x^2 between the limits x=βˆ’1x = -1 and x=2x = 2.

The curve intersects the xx-axis at the points where y=0y = 0, which can be found by solving 5βˆ’x2=05 - x^2 = 0. These points are at x=βˆ’5x = -\sqrt{5} and x=5x = \sqrt{5}.


Solution

We need to compute the following integral to find the area:

A=βˆ«βˆ’12(5βˆ’x2),dxA = \int_{-1}^{2} (5 - x^2) , dx

Step 1: Break the integral into two parts

The integral can be split into:

A=βˆ«βˆ’125,dxβˆ’βˆ«βˆ’12x2,dxA = \int_{-1}^{2} 5 , dx - \int_{-1}^{2} x^2 , dx

Step 2: Evaluate the first integral

The integral of 5 is:

∫5,dx=5x\int 5 , dx = 5x

Now evaluate this from x=βˆ’1x = -1 to x=2x = 2:

[5x]βˆ’12=5(2)βˆ’5(βˆ’1)=10+5=15\left[ 5x \right]_{-1}^{2} = 5(2) - 5(-1) = 10 + 5 = 15

Step 3: Evaluate the second integral

The integral of x2x^2 is:

∫x2,dx=x33\int x^2 , dx = \frac{x^3}{3}

Now evaluate this from x=βˆ’1x = -1 to x=2x = 2:

[x33]βˆ’12=(2)33βˆ’(βˆ’1)33=83+13=93=3\left[ \frac{x^3}{3} \right]_{-1}^{2} = \frac{(2)^3}{3} - \frac{(-1)^3}{3} = \frac{8}{3} + \frac{1}{3} = \frac{9}{3} = 3

Step 4: Combine the results

Now, subtract the results from the two integrals:

A=15βˆ’3=12A = 15 - 3 = 12

Thus, the area under the curve is 12 square units.


Key Formulas or Methods Used

  • Definite Integral: The area under a curve from x=ax = a to x=bx = b is given by:
A=∫abf(x),dx A = \int_{a}^{b} f(x) , dx
  • Basic Integration Rules:
    • ∫a,dx=ax\int a , dx = ax
    • ∫x2,dx=x33\int x^2 , dx = \frac{x^3}{3}

Summary of Steps

  1. Set up the integral: A=βˆ«βˆ’12(5βˆ’x2),dxA = \int_{-1}^{2} (5 - x^2) , dx
  2. Break the integral into two parts: A=βˆ«βˆ’125,dxβˆ’βˆ«βˆ’12x2,dxA = \int_{-1}^{2} 5 , dx - \int_{-1}^{2} x^2 , dx
  3. Evaluate the first integral: ∫5,dx=5xβ‡’,15\int 5 , dx = 5x \quad \Rightarrow , 15
  4. Evaluate the second integral: ∫x2,dx=x33β‡’,3\int x^2 , dx = \frac{x^3}{3} \quad \Rightarrow , 3
  5. Subtract the results: A=15βˆ’3=12,squareΒ unitsA = 15 - 3 = 12 , \text{square units}