Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.7 Q-4

Question Statement

Find the area bounded by the cosine function from x=βˆ’Ο€2x = -\frac{\pi}{2} to x=Ο€2x = \frac{\pi}{2}.


Background and Explanation

This problem involves finding the area under the curve y=cos⁑(x)y = \cos(x) between the limits x=βˆ’Ο€2x = -\frac{\pi}{2} and x=Ο€2x = \frac{\pi}{2}. The area under a curve is calculated using definite integration. The cosine function oscillates between -1 and 1, so we are interested in the integral of this function over the given interval.


Solution

We need to compute the following integral to find the area under the curve:

A=βˆ«βˆ’Ο€2Ο€2cos⁑(x),dxA = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) , dx

Step 1: Integrate the cosine function

The integral of cos⁑(x)\cos(x) is sin⁑(x)\sin(x). Applying this:

∫cos⁑(x),dx=sin⁑(x)\int \cos(x) , dx = \sin(x)

Thus, the area becomes:

A=sin⁑(x)βˆ£βˆ’Ο€2Ο€2A = \sin(x) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}

Step 2: Evaluate the integral at the limits

Now, we evaluate sin⁑(x)\sin(x) at the limits x=Ο€2x = \frac{\pi}{2} and x=βˆ’Ο€2x = -\frac{\pi}{2}:

A=sin⁑(Ο€2)βˆ’sin⁑(βˆ’Ο€2)A = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right)

Since sin⁑(Ο€2)=1\sin\left(\frac{\pi}{2}\right) = 1 and sin⁑(βˆ’Ο€2)=βˆ’1\sin\left(-\frac{\pi}{2}\right) = -1, we get:

A=1βˆ’(βˆ’1)=2A = 1 - (-1) = 2

Thus, the area under the curve is 2 square units.


Key Formulas or Methods Used

  • Definite Integral: The area under the curve from x=ax = a to x=bx = b is given by:
A=∫abf(x),dx A = \int_{a}^{b} f(x) , dx
  • Integral of Cosine: The integral of cos⁑(x)\cos(x) is:
∫cos⁑(x),dx=sin⁑(x) \int \cos(x) , dx = \sin(x)

Summary of Steps

  1. Set up the integral: A=βˆ«βˆ’Ο€2Ο€2cos⁑(x),dxA = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) , dx

  2. Integrate the cosine function: ∫cos⁑(x),dx=sin⁑(x)\int \cos(x) , dx = \sin(x)

  3. Evaluate the integral at the limits: A=sin⁑(Ο€2)βˆ’sin⁑(βˆ’Ο€2)A = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right)

  4. Simplify: A=1βˆ’(βˆ’1)=2A = 1 - (-1) = 2

  5. The area is 2 square units.