Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.8 Q-11

Question Statement

Solve the differential equation:

dydx+2xy2y+1=x\frac{dy}{dx} + \frac{2xy}{2y + 1} = x

Background and Explanation

This is a first-order linear differential equation. To solve it, we first isolate dydx\frac{dy}{dx}, then separate the variables xx and yy, and finally integrate both sides. Understanding the process of isolating terms and separating variables is key to solving this type of equation.


Solution

  1. Start with the given equation:

    The equation is:

dydx+2xy2y+1=x \frac{dy}{dx} + \frac{2xy}{2y + 1} = x
  1. Isolate dydx\frac{dy}{dx}:

    To isolate dydx\frac{dy}{dx}, subtract 2xy2y+1\frac{2xy}{2y + 1} from both sides:

dydx=xβˆ’2xy2y+1 \frac{dy}{dx} = x - \frac{2xy}{2y + 1}
  1. Simplify the expression:

    Combine the terms on the right-hand side:

dydx=2xy+xβˆ’2xy2y+1 \frac{dy}{dx} = \frac{2xy + x - 2xy}{2y + 1}

The 2xy2xy terms cancel out, leaving:

dydx=x2y+1 \frac{dy}{dx} = \frac{x}{2y + 1}
  1. Separate the variables:

    Now separate the variables by multiplying both sides by (2y+1)(2y + 1) and dxdx:

(2y+1),dy=x,dx (2y + 1) , dy = x , dx
  1. Integrate both sides:

    On the left-hand side, integrate (2y+1),dy(2y + 1) , dy:

∫(2y+1),dy=∫x,dx \int (2y + 1) , dy = \int x , dx

The integral of 2y+12y + 1 with respect to yy is:

y2+y y^2 + y

The integral of xx with respect to xx is:

x22 \frac{x^2}{2}
  1. Combine the results:

    Putting both sides together, we get:

y2+y=x22+C1 y^2 + y = \frac{x^2}{2} + C_1

Where C1C_1 is the constant of integration.

  1. Rearrange the equation:

    Finally, we can rewrite the equation as:

y(y+1)=x22+C1 y(y + 1) = \frac{x^2}{2} + C_1

Key Formulas or Methods Used

  • Separation of Variables: Rearranged the equation to separate yy-terms and xx-terms.
  • Integration:
    • ∫(2y+1),dy=y2+y\int (2y + 1) , dy = y^2 + y
    • ∫x,dx=x22\int x , dx = \frac{x^2}{2}

Summary of Steps

  1. Start with the equation: dydx+2xy2y+1=x\frac{dy}{dx} + \frac{2xy}{2y + 1} = x.
  2. Isolate dydx\frac{dy}{dx}: dydx=x2y+1\frac{dy}{dx} = \frac{x}{2y + 1}.
  3. Separate the variables: (2y+1),dy=x,dx(2y + 1) , dy = x , dx.
  4. Integrate both sides:
    • Left side: ∫(2y+1),dy=y2+y\int (2y + 1) , dy = y^2 + y
    • Right side: ∫x,dx=x22\int x , dx = \frac{x^2}{2}
  5. Final result: y(y+1)=x22+C1y(y + 1) = \frac{x^2}{2} + C_1.