Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.8 Q-12

Question Statement

Solve the differential equation:

(x2βˆ’x2y)dydx+y2+xy2=0\left(x^{2} - x^{2}y\right) \frac{dy}{dx} + y^{2} + xy^{2} = 0

Background and Explanation

This is a first-order separable differential equation. The key to solving it is isolating the terms involving yy on one side and those involving xx on the other side. Once separated, we integrate both sides to find the solution.


Solution

  1. Start with the given equation:

    The equation is:

x2(1βˆ’y)dydx+y2(1+x)=0 x^{2}(1 - y) \frac{dy}{dx} + y^{2}(1 + x) = 0
  1. Rearrange the equation:

    Move y2(1+x)y^{2}(1 + x) to the other side:

x2(1βˆ’y)dydx=βˆ’y2(1+x) x^{2}(1 - y) \frac{dy}{dx} = -y^{2}(1 + x)
  1. Separate the variables:

    To separate the variables, divide both sides by x2(1βˆ’y)y2x^{2}(1 - y) y^{2}:

(1βˆ’yβˆ’y2)dy=(1+xx2)dx \left( \frac{1 - y}{-y^{2}} \right) dy = \left( \frac{1 + x}{x^{2}} \right) dx
  1. Simplify the expression:

    Simplifying further:

(1yβˆ’1y2)dy=(1x2βˆ’1x)dx \left( \frac{1}{y} - \frac{1}{y^{2}} \right) dy = \left( \frac{1}{x^{2}} - \frac{1}{x} \right) dx
  1. Integrate both sides:

    Now, integrate both sides:

∫(1yβˆ’1y2)dy=∫(1x2βˆ’1x)dx \int \left( \frac{1}{y} - \frac{1}{y^{2}} \right) dy = \int \left( \frac{1}{x^{2}} - \frac{1}{x} \right) dx

On the left-hand side:

∫1ydyβˆ’βˆ«1y2dy=ln⁑∣y∣+1y \int \frac{1}{y} dy - \int \frac{1}{y^{2}} dy = \ln|y| + \frac{1}{y}

On the right-hand side:

∫1x2dxβˆ’βˆ«1xdx=βˆ’1x+ln⁑∣x∣ \int \frac{1}{x^{2}} dx - \int \frac{1}{x} dx = -\frac{1}{x} + \ln|x|
  1. Combine the results:

    Putting both sides together:

ln⁑∣y∣+1y=βˆ’1x+ln⁑∣x∣+C \ln|y| + \frac{1}{y} = -\frac{1}{x} + \ln|x| + C

Where CC is the constant of integration.

  1. Final simplified equation:

    The final solution can be written as:

ln⁑∣xβˆ£βˆ’1x+C \ln|x| - \frac{1}{x} + C

Key Formulas or Methods Used

  • Separation of Variables: Rearranged the equation to separate yy-terms and xx-terms.
  • Integration:
    • ∫1y,dy=ln⁑∣y∣\int \frac{1}{y} , dy = \ln|y|
    • ∫1y2,dy=βˆ’1y\int \frac{1}{y^2} , dy = -\frac{1}{y}
    • ∫1x2,dx=βˆ’1x\int \frac{1}{x^2} , dx = -\frac{1}{x}
    • ∫1x,dx=ln⁑∣x∣\int \frac{1}{x} , dx = \ln|x|

Summary of Steps

  1. Start with the equation: x2(1βˆ’y)dydx+y2(1+x)=0x^{2}(1 - y) \frac{dy}{dx} + y^{2}(1 + x) = 0.
  2. Rearrange to: x2(1βˆ’y)dydx=βˆ’y2(1+x)x^{2}(1 - y) \frac{dy}{dx} = -y^{2}(1 + x).
  3. Separate the variables: (1yβˆ’1y2)dy=(1x2βˆ’1x)dx\left( \frac{1}{y} - \frac{1}{y^{2}} \right) dy = \left( \frac{1}{x^{2}} - \frac{1}{x} \right) dx.
  4. Integrate both sides:
    • Left side: ln⁑∣y∣+1y\ln|y| + \frac{1}{y}
    • Right side: βˆ’1x+ln⁑∣x∣-\frac{1}{x} + \ln|x|
  5. Final result: ln⁑∣y∣+1y=βˆ’1x+ln⁑∣x∣+C\ln|y| + \frac{1}{y} = -\frac{1}{x} + \ln|x| + C.