Question Statement
Solve the differential equation:
Sec2xtany,dx+Sec2ytanx,dy=0
Background and Explanation
This is a first-order, separable differential equation. The goal is to rearrange the equation so that all terms involving x are on one side and all terms involving y are on the other. Once separated, we can integrate both sides to find the solution.
Solution
-
Start with the given equation:
The equation is:
Sec2xtany,dx+Sec2ytanx,dy=0
-
Rearrange the terms:
Move the second term to the right-hand side:
Sec2ytanx,dy=βSec2xtany,dx
-
Separate the variables:
Now, divide both sides by tany and tanx, and by Sec2:
tanySec2yβ,dy=βtanxSec2xβ,dx
-
Integrate both sides:
We now integrate both sides:
β«tanySec2yβ,dy=ββ«tanxSec2xβ,dx
On the left-hand side, the integral of tanySec2yβ is lntany. Similarly, on the right-hand side, the integral of tanxSec2xβ is βlntanx. This gives:
lntany=βlntanx+lnβ£Cβ£
-
Simplify the equation:
Combine the logarithmic terms:
lnβ£tanyβ£=lnβ£tanxβ£+lnβ£Cβ£
Using properties of logarithms:
lnβ£tanytanxβ£=lnβ£Cβ£
-
Final solution:
Exponentiate both sides to remove the logarithms:
tanxtany=C
- Separation of Variables: Rearranged the equation to separate x-terms and y-terms.
- Integration of Trigonometric Functions:
- β«tanySec2yβ,dy=lntany
- β«tanxSec2xβ,dx=βlntanx
- Logarithmic Properties: Used lna+lnb=ln(ab) to combine the logarithmic terms.
Summary of Steps
- Start with the equation: Sec2xtany,dx+Sec2ytanx,dy=0.
- Rearrange to: Sec2ytanx,dy=βSec2xtany,dx.
- Separate the variables: tanySec2yβ,dy=βtanxSec2xβ,dx.
- Integrate both sides: lntany=βlntanx+lnβ£Cβ£.
- Simplify: lnβ£tanytanxβ£=lnβ£Cβ£.
- Final result: tanxtany=C.