Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.8 Q-13

Question Statement

Solve the differential equation:

Sec⁑2xtan⁑y,dx+Sec⁑2ytan⁑x,dy=0\operatorname{Sec}^{2} \mathrm{x} \tan \mathrm{y} , dx + \operatorname{Sec}^{2} \mathrm{y} \tan \mathrm{x} , dy = 0

Background and Explanation

This is a first-order, separable differential equation. The goal is to rearrange the equation so that all terms involving xx are on one side and all terms involving yy are on the other. Once separated, we can integrate both sides to find the solution.


Solution

  1. Start with the given equation:

    The equation is:

Sec⁑2xtan⁑y,dx+Sec⁑2ytan⁑x,dy=0 \operatorname{Sec}^{2} \mathrm{x} \tan \mathrm{y} , dx + \operatorname{Sec}^{2} \mathrm{y} \tan \mathrm{x} , dy = 0
  1. Rearrange the terms:

    Move the second term to the right-hand side:

Sec⁑2ytan⁑x,dy=βˆ’Sec⁑2xtan⁑y,dx \operatorname{Sec}^{2} \mathrm{y} \tan \mathrm{x} , dy = -\operatorname{Sec}^{2} \mathrm{x} \tan \mathrm{y} , dx
  1. Separate the variables:

    Now, divide both sides by tan⁑y\tan \mathrm{y} and tan⁑x\tan \mathrm{x}, and by Sec⁑2\operatorname{Sec}^{2}:

Sec⁑2ytan⁑y,dy=βˆ’Sec⁑2xtan⁑x,dx \frac{\operatorname{Sec}^{2} \mathrm{y}}{\tan \mathrm{y}} , dy = -\frac{\operatorname{Sec}^{2} \mathrm{x}}{\tan \mathrm{x}} , dx
  1. Integrate both sides:

    We now integrate both sides:

∫Sec⁑2ytan⁑y,dy=βˆ’βˆ«Sec⁑2xtan⁑x,dx \int \frac{\operatorname{Sec}^{2} \mathrm{y}}{\tan \mathrm{y}} , dy = -\int \frac{\operatorname{Sec}^{2} \mathrm{x}}{\tan \mathrm{x}} , dx

On the left-hand side, the integral of Sec⁑2ytan⁑y\frac{\operatorname{Sec}^{2} \mathrm{y}}{\tan \mathrm{y}} is ln⁑tan⁑y\ln \tan y. Similarly, on the right-hand side, the integral of Sec⁑2xtan⁑x\frac{\operatorname{Sec}^{2} \mathrm{x}}{\tan \mathrm{x}} is βˆ’ln⁑tan⁑x-\ln \tan x. This gives:

ln⁑tan⁑y=βˆ’ln⁑tan⁑x+ln⁑∣C∣ \ln \tan y = -\ln \tan x + \ln |C|
  1. Simplify the equation:

    Combine the logarithmic terms:

ln⁑∣tan⁑y∣=ln⁑∣tan⁑x∣+ln⁑∣C∣ \ln |\tan y| = \ln |\tan x| + \ln |C|

Using properties of logarithms:

ln⁑∣tan⁑ytan⁑x∣=ln⁑∣C∣ \ln |\tan y \tan x| = \ln |C|
  1. Final solution:

    Exponentiate both sides to remove the logarithms:

tan⁑xtan⁑y=C \tan x \tan y = C

Key Formulas or Methods Used

  • Separation of Variables: Rearranged the equation to separate xx-terms and yy-terms.
  • Integration of Trigonometric Functions:
    • ∫Sec⁑2ytan⁑y,dy=ln⁑tan⁑y\int \frac{\operatorname{Sec}^{2} \mathrm{y}}{\tan \mathrm{y}} , dy = \ln \tan y
    • ∫Sec⁑2xtan⁑x,dx=βˆ’ln⁑tan⁑x\int \frac{\operatorname{Sec}^{2} \mathrm{x}}{\tan \mathrm{x}} , dx = -\ln \tan x
  • Logarithmic Properties: Used ln⁑a+ln⁑b=ln⁑(ab)\ln a + \ln b = \ln(ab) to combine the logarithmic terms.

Summary of Steps

  1. Start with the equation: Sec⁑2xtan⁑y,dx+Sec⁑2ytan⁑x,dy=0\operatorname{Sec}^{2} \mathrm{x} \tan \mathrm{y} , dx + \operatorname{Sec}^{2} \mathrm{y} \tan \mathrm{x} , dy = 0.
  2. Rearrange to: Sec⁑2ytan⁑x,dy=βˆ’Sec⁑2xtan⁑y,dx\operatorname{Sec}^{2} \mathrm{y} \tan \mathrm{x} , dy = -\operatorname{Sec}^{2} \mathrm{x} \tan \mathrm{y} , dx.
  3. Separate the variables: Sec⁑2ytan⁑y,dy=βˆ’Sec⁑2xtan⁑x,dx\frac{\operatorname{Sec}^{2} \mathrm{y}}{\tan \mathrm{y}} , dy = -\frac{\operatorname{Sec}^{2} \mathrm{x}}{\tan \mathrm{x}} , dx.
  4. Integrate both sides: ln⁑tan⁑y=βˆ’ln⁑tan⁑x+ln⁑∣C∣\ln \tan y = -\ln \tan x + \ln |C|.
  5. Simplify: ln⁑∣tan⁑ytan⁑x∣=ln⁑∣C∣\ln |\tan y \tan x| = \ln |C|.
  6. Final result: tan⁑xtan⁑y=C\tan x \tan y = C.