Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.8 Q-15

Question Statement

Solve the differential equation:

1+cos⁑xtan⁑ydydx=01 + \cos x \tan y \frac{d y}{d x} = 0

Background and Explanation

This is a first-order separable differential equation. The goal is to separate the variables xx and yy on opposite sides of the equation so that we can integrate each side independently. The key concepts used here involve trigonometric identities and basic integration techniques.


Solution

  1. Start with the given equation:

    The equation is:

1+cos⁑xtan⁑ydydx=0 1 + \cos x \tan y \frac{d y}{d x} = 0
  1. Rearrange the equation:

    Move all terms involving dydx\frac{dy}{dx} to one side:

cos⁑xtan⁑ydydx=βˆ’1 \cos x \tan y \frac{d y}{d x} = -1
  1. Separate the variables:

    Divide both sides to isolate dydy on one side and dxdx on the other:

tan⁑y,dy=βˆ’1cos⁑x,dx \tan y , dy = -\frac{1}{\cos x} , dx

This can be rewritten as:

βˆ’sin⁑ycos⁑y,dy=sec⁑x,dx \frac{-\sin y}{\cos y} , dy = \sec x , dx
  1. Integrate both sides:

    Now, we integrate both sides of the equation.

    • For the left-hand side, use the identity ddy(cos⁑y)=βˆ’sin⁑y\frac{d}{dy} (\cos y) = -\sin y to simplify the integral:
βˆ«βˆ’sin⁑ycos⁑y,dy=∫sec⁑x,dx \int \frac{-\sin y}{\cos y} , dy = \int \sec x , dx
  • The integral of βˆ’sin⁑ycos⁑y\frac{-\sin y}{\cos y} is ln⁑∣cos⁑y∣\ln |\cos y|, and the integral of sec⁑x\sec x is ln⁑∣sec⁑x+tan⁑x∣\ln |\sec x + \tan x|. Thus, we have:
ln⁑∣cos⁑y∣=ln⁑∣sec⁑x+tan⁑x∣+ln⁑∣C∣ \ln |\cos y| = \ln |\sec x + \tan x| + \ln |C|
  1. Simplify the equation:

    Combine the logarithms on the right-hand side:

ln⁑∣cos⁑y∣=ln⁑∣sec⁑x+tan⁑x∣+ln⁑∣C∣ \ln |\cos y| = \ln |\sec x + \tan x| + \ln |C|

Exponentiate both sides to remove the logarithms:

∣cos⁑y∣=C∣sec⁑x+tan⁑x∣ |\cos y| = C |\sec x + \tan x|
  1. Final equation:

    The solution is:

cos⁑y=C(sec⁑x+tan⁑x) \cos y = C (\sec x + \tan x)

Key Formulas or Methods Used

  • Separation of Variables: Rearranged the equation so that terms involving yy were on one side and terms involving xx were on the other.
  • Trigonometric Identities: Used basic trigonometric identities such as sec⁑x=1cos⁑x\sec x = \frac{1}{\cos x} and ddy(cos⁑y)=βˆ’sin⁑y\frac{d}{dy}(\cos y) = -\sin y.
  • Integration: Applied standard integrals for sec⁑x\sec x and βˆ’sin⁑ycos⁑y\frac{-\sin y}{\cos y}.

Summary of Steps

  1. Start with the equation: 1+cos⁑xtan⁑ydydx=01 + \cos x \tan y \frac{d y}{d x} = 0.
  2. Rearrange to: cos⁑xtan⁑ydydx=βˆ’1\cos x \tan y \frac{d y}{d x} = -1.
  3. Separate the variables: tan⁑y,dy=βˆ’1cos⁑x,dx\tan y , dy = -\frac{1}{\cos x} , dx.
  4. Integrate both sides: βˆ«βˆ’sin⁑ycos⁑y,dy=∫sec⁑x,dx\int \frac{-\sin y}{\cos y} , dy = \int \sec x , dx.
  5. Simplify: ln⁑∣cos⁑y∣=ln⁑∣sec⁑x+tan⁑x∣+ln⁑∣C∣\ln |\cos y| = \ln |\sec x + \tan x| + \ln |C|.
  6. Final solution: cos⁑y=C(sec⁑x+tan⁑x)\cos y = C (\sec x + \tan x).