Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.8 Q-16

Question Statement

Solve the differential equation:

yβˆ’xdydx=3(1+xdydx)y - x \frac{d y}{d x} = 3 \left(1 + x \frac{d y}{d x}\right)

Background and Explanation

This is a first-order linear differential equation. The method used to solve this is separation of variables, where we isolate yy terms on one side and xx terms on the other side. It requires basic algebraic manipulation and integration. The key concept involves simplifying the equation by isolating dydx\frac{dy}{dx} and then integrating both sides.


Solution

  1. Start with the given equation:

    The equation is:

yβˆ’xdydx=3(1+xdydx) y - x \frac{d y}{d x} = 3 \left(1 + x \frac{d y}{d x}\right)
  1. Expand the right-hand side:

    Distribute the 33 on the right-hand side:

yβˆ’xdydx=3+3xdydx y - x \frac{d y}{d x} = 3 + 3x \frac{d y}{d x}
  1. Rearrange to isolate dydx\frac{dy}{dx}:

    Bring all terms involving dydx\frac{dy}{dx} to one side and constant terms to the other:

yβˆ’xdydxβˆ’3xdydx=3 y - x \frac{d y}{d x} - 3x \frac{d y}{d x} = 3

Simplifying further:

yβˆ’4xdydx=3 y - 4x \frac{d y}{d x} = 3
  1. Isolate dydx\frac{dy}{dx}:

    Move the term involving dydx\frac{dy}{dx} to one side:

βˆ’4xdydx=3βˆ’y -4x \frac{d y}{d x} = 3 - y
  1. Separate the variables:

    Now, separate the variables so that all yy-terms are on one side and all xx-terms are on the other:

βˆ’43βˆ’y,dy=1x,dx \frac{-4}{3 - y} , dy = \frac{1}{x} , dx

This is now a separable equation.

  1. Integrate both sides:

    • For the left-hand side, integrate 4yβˆ’3\frac{4}{y - 3}:
∫4yβˆ’3,dy=4ln⁑∣yβˆ’3∣ \int \frac{4}{y - 3} , dy = 4 \ln |y - 3|
  • For the right-hand side, integrate 1x\frac{1}{x}:
∫1x,dx=ln⁑∣x∣ \int \frac{1}{x} , dx = \ln |x|

This gives us the equation:

4ln⁑∣yβˆ’3∣=ln⁑∣x∣+ln⁑∣C∣ 4 \ln |y - 3| = \ln |x| + \ln |C|
  1. Simplify the equation:

    Combine the logarithms on the right-hand side:

ln⁑∣(yβˆ’3)4∣=ln⁑∣C∣+ln⁑∣x∣ \ln |(y - 3)^4| = \ln |C| + \ln |x|

Exponentiate both sides to get rid of the logarithms:

(yβˆ’3)4=Cx (y - 3)^4 = Cx
  1. Solve for yy:

    Finally, solve for yy:

yβˆ’3=(Cx)1/4 y - 3 = (Cx)^{1/4}

Which simplifies to:

y=3+Cx1/4 y = 3 + Cx^{1/4}

Key Formulas or Methods Used

  • Separation of Variables: The process of rearranging the equation so that all terms involving yy are on one side and all terms involving xx are on the other.
  • Integration: Standard integrals for 1x\frac{1}{x} and 1yβˆ’3\frac{1}{y - 3}.
  • Logarithmic Properties: Using logarithmic properties to combine and simplify terms.

Summary of Steps

  1. Start with the equation: yβˆ’xdydx=3(1+xdydx)y - x \frac{d y}{d x} = 3 \left(1 + x \frac{d y}{d x}\right).
  2. Expand the right-hand side: yβˆ’xdydx=3+3xdydxy - x \frac{d y}{d x} = 3 + 3x \frac{d y}{d x}.
  3. Rearrange to isolate dydx\frac{dy}{dx}: yβˆ’4xdydx=3y - 4x \frac{d y}{d x} = 3.
  4. Isolate dydx\frac{dy}{dx}: βˆ’4xdydx=3βˆ’y-4x \frac{d y}{d x} = 3 - y.
  5. Separate the variables: βˆ’43βˆ’y,dy=1x,dx\frac{-4}{3 - y} , dy = \frac{1}{x} , dx.
  6. Integrate both sides: 4ln⁑∣yβˆ’3∣=ln⁑∣x∣+ln⁑∣C∣4 \ln |y - 3| = \ln |x| + \ln |C|.
  7. Simplify and solve: (yβˆ’3)4=Cx(y - 3)^4 = Cx, and y=3+Cx1/4y = 3 + Cx^{1/4}.