Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

3.8 Q-17

Question Statement

Solve the differential equation:

Sec⁑x+tan⁑ydydx=0\operatorname{Sec} x + \tan y \frac{d y}{d x} = 0

Background and Explanation

This is a first-order differential equation that can be solved using separation of variables. The key concept is to rewrite the equation such that all terms involving yy are on one side and all terms involving xx are on the other. After separating, the equation can be integrated on both sides.


Solution

  1. Start with the given equation:

    The equation is:

Sec⁑x+tan⁑ydydx=0 \operatorname{Sec} x + \tan y \frac{d y}{d x} = 0
  1. Rearrange the equation:

    Move the term involving dydx\frac{d y}{d x} to one side:

tan⁑ydydx=βˆ’Sec⁑x \tan y \frac{d y}{d x} = -\operatorname{Sec} x
  1. Separate the variables:

    Multiply both sides by dxdx and rearrange to separate the yy-terms and xx-terms:

tan⁑y,dy=βˆ’Sec⁑x,dx \tan y , dy = -\operatorname{Sec} x , dx
  1. Integrate both sides:

    Now, integrate both sides:

    • The left side is the integral of tan⁑y\tan y:
∫tan⁑y,dy=βˆ’ln⁑∣cos⁑y∣ \int \tan y , dy = -\ln |\cos y|
  • The right side is the integral of Sec⁑x\operatorname{Sec} x:
∫Sec⁑x,dx=ln⁑∣sec⁑x+tan⁑x∣ \int \operatorname{Sec} x , dx = \ln |\sec x + \tan x|

This gives us:

βˆ’ln⁑∣cos⁑y∣=ln⁑∣sec⁑x+tan⁑x∣+ln⁑∣C∣ -\ln |\cos y| = \ln |\sec x + \tan x| + \ln |C|
  1. Simplify the equation:

    Combine the logarithmic terms:

ln⁑∣cos⁑y∣=ln⁑∣C(sec⁑x+tan⁑x)∣ \ln |\cos y| = \ln |C (\sec x + \tan x)|
  1. Exponentiate both sides to eliminate the logarithms:
∣cos⁑y∣=C(sec⁑x+tan⁑x) |\cos y| = C (\sec x + \tan x)
  1. Final solution:

    The equation simplifies to:

cos⁑y=C(sec⁑x+tan⁑x) \cos y = C (\sec x + \tan x)

Key Formulas or Methods Used

  • Separation of Variables: Rearranging the equation to isolate terms involving yy on one side and terms involving xx on the other side.
  • Integration of Standard Trigonometric Functions: Using standard integrals for tan⁑y\tan y and sec⁑x\sec x.
  • Logarithmic Properties: Using logarithmic rules to combine terms.

Summary of Steps

  1. Start with the equation: Sec⁑x+tan⁑ydydx=0\operatorname{Sec} x + \tan y \frac{d y}{d x} = 0.
  2. Rearrange to isolate the derivative: tan⁑ydydx=βˆ’Sec⁑x\tan y \frac{d y}{d x} = -\operatorname{Sec} x.
  3. Separate the variables: tan⁑y,dy=βˆ’Sec⁑x,dx\tan y , dy = -\operatorname{Sec} x , dx.
  4. Integrate both sides: ∫tan⁑y,dy=βˆ«βˆ’Sec⁑x,dx\int \tan y , dy = \int -\operatorname{Sec} x , dx.
  5. Simplify the logarithmic terms: ln⁑∣cos⁑y∣=ln⁑∣C(sec⁑x+tan⁑x)∣\ln |\cos y| = \ln |C (\sec x + \tan x)|.
  6. Exponentiate both sides: cos⁑y=C(sec⁑x+tan⁑x)\cos y = C (\sec x + \tan x).