Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.1 Q-13

Question Statement

Find the points that trisect the line segment joining the points A(βˆ’1,4)A(-1, 4) and B(6,2)B(6, 2).


Background and Explanation

In this problem, we are asked to find the points that trisect the line segment joining two given points. Trisection means dividing the line segment into three equal parts, which results in two points that divide the segment in the ratio 1:2 and 2:1. We will use the section formula, which is used to find the coordinates of a point dividing a line segment in a given ratio.


Solution

We are given points A(βˆ’1,4)A(-1, 4) and B(6,2)B(6, 2). We need to find two points CC and DD that trisect the line segment ABAB.

Step 1: Use the Section Formula for Point CC

Point CC divides the segment in the ratio 1:2. According to the section formula, the coordinates of a point dividing a line segment in the ratio m:nm:n are given by:

x=nx1+mx2m+n,y=ny1+my2m+nx = \frac{n x_1 + m x_2}{m + n}, \quad y = \frac{n y_1 + m y_2}{m + n}

For point CC, we use the ratio 1:2:

x1=βˆ’1,,y1=4(coordinatesΒ ofΒ A)x_1 = -1, , y_1 = 4 \quad \text{(coordinates of $A$)} x2=6,,y2=2(coordinatesΒ ofΒ B)x_2 = 6, , y_2 = 2 \quad \text{(coordinates of $B$)}

Using the section formula for C(x1,y1)C(x_1, y_1) where the ratio is 1:2:

  • For the xx-coordinate:
x1=1(6)+2(βˆ’1)1+2=6βˆ’23=43 x_1 = \frac{1(6) + 2(-1)}{1 + 2} = \frac{6 - 2}{3} = \frac{4}{3}
  • For the yy-coordinate:
y1=1(2)+2(4)1+2=2+83=103 y_1 = \frac{1(2) + 2(4)}{1 + 2} = \frac{2 + 8}{3} = \frac{10}{3}

Thus, the coordinates of point CC are (43,103)\left(\frac{4}{3}, \frac{10}{3}\right).


Step 2: Use the Section Formula for Point DD

Point DD divides the segment in the ratio 2:1. We again use the section formula but with the ratio 2:1:

  • For the xx-coordinate:
x2=2(6)+1(βˆ’1)2+1=12βˆ’13=113 x_2 = \frac{2(6) + 1(-1)}{2 + 1} = \frac{12 - 1}{3} = \frac{11}{3}
  • For the yy-coordinate:
y2=2(2)+1(4)2+1=4+43=83 y_2 = \frac{2(2) + 1(4)}{2 + 1} = \frac{4 + 4}{3} = \frac{8}{3}

Thus, the coordinates of point DD are (113,83)\left(\frac{11}{3}, \frac{8}{3}\right).


Step 3: Verify by Considering Midpoint

Alternatively, point DD is also the midpoint of segment CBCB. We can calculate the midpoint of CBCB to confirm the result.

  • The formula for the midpoint of a segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is:
xmid=x1+x22,ymid=y1+y22 x_{\text{mid}} = \frac{x_1 + x_2}{2}, \quad y_{\text{mid}} = \frac{y_1 + y_2}{2}

Using the coordinates of C(43,103)C\left(\frac{4}{3}, \frac{10}{3}\right) and B(6,2)B(6, 2):

  • For the xx-coordinate:
x2=43+62=43+1832=226=113 x_2 = \frac{\frac{4}{3} + 6}{2} = \frac{\frac{4}{3} + \frac{18}{3}}{2} = \frac{22}{6} = \frac{11}{3}
  • For the yy-coordinate:
y2=103+22=103+632=166=83 y_2 = \frac{\frac{10}{3} + 2}{2} = \frac{\frac{10}{3} + \frac{6}{3}}{2} = \frac{16}{6} = \frac{8}{3}

This confirms that the coordinates of point DD are indeed (113,83)\left(\frac{11}{3}, \frac{8}{3}\right).


Key Formulas or Methods Used

  • Section Formula:
    For a point dividing a line segment in the ratio m:nm:n:
x=nx1+mx2m+n,y=ny1+my2m+n x = \frac{n x_1 + m x_2}{m + n}, \quad y = \frac{n y_1 + m y_2}{m + n}
  • Midpoint Formula:
    The midpoint of a line segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is:
xmid=x1+x22,ymid=y1+y22 x_{\text{mid}} = \frac{x_1 + x_2}{2}, \quad y_{\text{mid}} = \frac{y_1 + y_2}{2}

Summary of Steps

  1. Use the section formula to find the first trisection point CC (ratio 1:2).
  2. Use the section formula to find the second trisection point DD (ratio 2:1).
  3. Verify the coordinates of DD by using the midpoint formula between CC and BB.