Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.1 Q-18

Question Statement

Find the point that divides the line segment joining points A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2) into four equal parts.


Background and Explanation

To solve this, we will apply the concept of internal division of a line segment. Specifically, we will use the section formula, which allows us to find the coordinates of a point dividing a line segment in a given ratio.

In this case, we need to find points that divide the segment into four equal parts. The three required points divide the segment in the ratios 1:3, 1:1, and 3:1, respectively.


Solution

We are given two points, A(x1,y1)A(x_1, y_1) and B(x2,y2)B(x_2, y_2), and need to find the points that divide the segment joining these points into four equal parts.

1. Point C divides the segment in the ratio 1:3:

Using the section formula:

a=(1)(x2)+(3)(x1)1+3=x2+3x14a = \frac{(1)(x_2) + (3)(x_1)}{1 + 3} = \frac{x_2 + 3x_1}{4} b=(1)(y2)+(3)(y1)1+3=y2+3y14b = \frac{(1)(y_2) + (3)(y_1)}{1 + 3} = \frac{y_2 + 3y_1}{4}

Thus, the coordinates of point C are:

C[x2+3x14,y2+3y14]C\left[\frac{x_2 + 3x_1}{4}, \frac{y_2 + 3y_1}{4}\right]

2. Point D divides the segment in the ratio 1:1 (midpoint):

The midpoint formula states:

D=(x1+x22,y1+y22)D = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)

Thus, the coordinates of point D are:

D[x1+x22,y1+y22]D\left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]

3. Point F divides the segment in the ratio 3:1:

Again, applying the section formula:

e=(3)(x2)+(1)(x1)3+1=3x2+x14e = \frac{(3)(x_2) + (1)(x_1)}{3 + 1} = \frac{3x_2 + x_1}{4} f=(3)(y2)+(1)(y1)3+1=3y2+y14f = \frac{(3)(y_2) + (1)(y_1)}{3 + 1} = \frac{3y_2 + y_1}{4}

Thus, the coordinates of point F are:

F[3x2+x14,3y2+y14]F\left[\frac{3x_2 + x_1}{4}, \frac{3y_2 + y_1}{4}\right]

Key Formulas or Methods Used

  • Section Formula: To find the point dividing a line segment in a given ratio:
(mx2+nx1m+n,my2+ny1m+n) \left( \frac{m x_2 + n x_1}{m + n}, \frac{m y_2 + n y_1}{m + n} \right)

where the point divides the segment in the ratio m:nm:n.

  • Midpoint Formula: For the midpoint (1:1 ratio):
(x1+x22,y1+y22) \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)

Summary of Steps

  1. Point C: Divide in the ratio 1:3 using the section formula:
    • C[x2+3x14,y2+3y14]C\left[\frac{x_2 + 3x_1}{4}, \frac{y_2 + 3y_1}{4}\right]
  2. Point D: Midpoint, divide in the ratio 1:1 using the midpoint formula:
    • D[x1+x22,y1+y22]D\left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]
  3. Point F: Divide in the ratio 3:1 using the section formula:
    • F[3x2+x14,3y2+y14]F\left[\frac{3x_2 + x_1}{4}, \frac{3y_2 + y_1}{4}\right]