Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.1 Q-4

Question Statement

Prove the following:

  1. Points A(0,2)A(0, 2), B(3,1)B(\sqrt{3}, 1), and C(0,βˆ’2)C(0, -2) are vertices of a right triangle.
  2. Points A(3,1)A(3, 1), B(βˆ’2,βˆ’3)B(-2, -3), and C(2,2)C(2, 2) are vertices of an isosceles triangle.
  3. Points A(5,2)A(5, 2), B(βˆ’2,3)B(-2, 3), C(βˆ’3,βˆ’4)C(-3, -4), and D(4,βˆ’5)D(4, -5) are vertices of a parallelogram. Determine whether it is a square.

Background and Explanation

To solve problems involving the classification of triangles and parallelograms:

  • Use the distance formula (x2βˆ’x1)2+(y2βˆ’y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} to calculate the length of sides.
  • For a right triangle, the square of the longest side (hypotenuse) equals the sum of the squares of the other two sides.
  • For an isosceles triangle, at least two sides must have the same length.
  • A parallelogram is classified as a square if all its sides are equal and its diagonals are also equal.

Solution

Part 1: Verifying a Right Triangle

We calculate the distances between the given points:

  1. Distance ABAB:
∣AB∣=(3βˆ’0)2+(1βˆ’2)2=(3)2+(βˆ’1)2=3+1=4=2 |AB| = \sqrt{(\sqrt{3} - 0)^2 + (1 - 2)^2} = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2
  1. Distance BCBC:
∣BC∣=(0βˆ’3)2+(βˆ’2βˆ’1)2=(3)2+(βˆ’3)2=3+9=12 |BC| = \sqrt{(0 - \sqrt{3})^2 + (-2 - 1)^2} = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3 + 9} = \sqrt{12}
  1. Distance ACAC:
∣AC∣=(0βˆ’0)2+(βˆ’2βˆ’2)2=0+16=4 |AC| = \sqrt{(0 - 0)^2 + (-2 - 2)^2} = \sqrt{0 + 16} = 4
  1. Check for the Pythagorean theorem:
∣AC∣2=∣AB∣2+∣BC∣2(i.e., 16=4+12) is true. |AC|^2 = |AB|^2 + |BC|^2 \quad \text{(i.e., $16 = 4 + 12$) is true.}

Thus, A,B,CA, B, C form a right triangle.


Part 2: Verifying an Isosceles Triangle

We calculate the distances between the given points:

  1. Distance ABAB:
∣AB∣=(βˆ’2βˆ’3)2+(βˆ’3βˆ’1)2=(βˆ’5)2+(βˆ’4)2=25+16=41 |AB| = \sqrt{(-2 - 3)^2 + (-3 - 1)^2} = \sqrt{(-5)^2 + (-4)^2} = \sqrt{25 + 16} = \sqrt{41}
  1. Distance BCBC:
∣BC∣=(2βˆ’(βˆ’2))2+(2βˆ’(βˆ’3))2=(4)2+(5)2=16+25=41 |BC| = \sqrt{(2 - (-2))^2 + (2 - (-3))^2} = \sqrt{(4)^2 + (5)^2} = \sqrt{16 + 25} = \sqrt{41}
  1. Distance ACAC:
∣AC∣=(2βˆ’3)2+(2βˆ’1)2=(βˆ’1)2+(1)2=1+1=2 |AC| = \sqrt{(2 - 3)^2 + (2 - 1)^2} = \sqrt{(-1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2}

Since ∣AB∣=∣BC∣|AB| = |BC|, the triangle is isosceles.


Part 3: Verifying a Square Parallelogram

We calculate the distances between the given points:

  1. Distance ABAB:
∣AB∣=(βˆ’2βˆ’5)2+(3βˆ’2)2=(βˆ’7)2+(1)2=49+1=50 |AB| = \sqrt{(-2 - 5)^2 + (3 - 2)^2} = \sqrt{(-7)^2 + (1)^2} = \sqrt{49 + 1} = \sqrt{50}
  1. Distance ADAD:
∣AD∣=(4βˆ’5)2+(βˆ’5βˆ’2)2=(βˆ’1)2+(βˆ’7)2=1+49=50 |AD| = \sqrt{(4 - 5)^2 + (-5 - 2)^2} = \sqrt{(-1)^2 + (-7)^2} = \sqrt{1 + 49} = \sqrt{50}
  1. Distance BCBC:
∣BC∣=(βˆ’3βˆ’(βˆ’2))2+(βˆ’4βˆ’3)2=(βˆ’1)2+(βˆ’7)2=1+49=50 |BC| = \sqrt{(-3 - (-2))^2 + (-4 - 3)^2} = \sqrt{(-1)^2 + (-7)^2} = \sqrt{1 + 49} = \sqrt{50}
  1. Distance CDCD:
∣CD∣=(4βˆ’(βˆ’3))2+(βˆ’5βˆ’(βˆ’4))2=(7)2+(βˆ’1)2=49+1=50 |CD| = \sqrt{(4 - (-3))^2 + (-5 - (-4))^2} = \sqrt{(7)^2 + (-1)^2} = \sqrt{49 + 1} = \sqrt{50}
  1. Diagonals ACAC and BDBD:
∣AC∣=(βˆ’3βˆ’5)2+(βˆ’4βˆ’2)2=(βˆ’8)2+(βˆ’6)2=64+36=10 |AC| = \sqrt{(-3 - 5)^2 + (-4 - 2)^2} = \sqrt{(-8)^2 + (-6)^2} = \sqrt{64 + 36} = 10 ∣BD∣=(4βˆ’(βˆ’2))2+(βˆ’5βˆ’3)2=(6)2+(βˆ’8)2=36+64=10 |BD| = \sqrt{(4 - (-2))^2 + (-5 - 3)^2} = \sqrt{(6)^2 + (-8)^2} = \sqrt{36 + 64} = 10

Since all sides and diagonals are equal, ABCDABCD is a square.


Key Formulas or Methods Used

  1. Distance formula:
d=(x2βˆ’x1)2+(y2βˆ’y1)2 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
  1. Pythagorean theorem:
c2=a2+b2 c^2 = a^2 + b^2
  1. Properties of triangles and parallelograms.

Summary of Steps

  1. Calculate the distances between the points using the distance formula.
  2. For a right triangle:
    • Verify the Pythagorean theorem.
  3. For an isosceles triangle:
    • Check if at least two sides are equal.
  4. For a parallelogram:
    • Verify if opposite sides are equal.
    • Check if diagonals are equal to determine if it is a square.