Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.1 Q-6

Question Statement

Find the value of hh such that the points A(3,βˆ’1)A(\sqrt{3}, -1), B(0,2)B(0, 2), and C(h,βˆ’2)C(h, -2) are the vertices of a right triangle with the right angle at vertex AA.


Background and Explanation

This problem involves the use of the Pythagorean Theorem for right-angled triangles. The Pythagorean theorem states that for a right-angled triangle with vertices at AA, BB, and CC (with right angle at AA), the following equation holds:

AB2+AC2=BC2\text{AB}^2 + \text{AC}^2 = \text{BC}^2

We will apply this to solve for hh.


Solution

Step 1: Apply the Pythagorean Theorem

We are given that the triangle has a right angle at vertex AA, so by the Pythagorean Theorem, we have:

AB2+AC2=BC2\text{AB}^2 + \text{AC}^2 = \text{BC}^2

Step 2: Calculate the Distance Between Points

  • Distance AB:
AB=(xBβˆ’xA)2+(yBβˆ’yA)2 \text{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}

Substituting the coordinates of A(3,βˆ’1)A(\sqrt{3}, -1) and B(0,2)B(0, 2):

AB=(0βˆ’3)2+(2βˆ’(βˆ’1))2=(3)2+32=3+9=12=23 \text{AB} = \sqrt{(0 - \sqrt{3})^2 + (2 - (-1))^2} = \sqrt{(\sqrt{3})^2 + 3^2} = \sqrt{3 + 9} = \sqrt{12} = 2\sqrt{3}
  • Distance AC:
AC=(xCβˆ’xA)2+(yCβˆ’yA)2 \text{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}

Substituting the coordinates of A(3,βˆ’1)A(\sqrt{3}, -1) and C(h,βˆ’2)C(h, -2):

AC=(hβˆ’3)2+(βˆ’2βˆ’(βˆ’1))2=(hβˆ’3)2+(βˆ’1)2=(hβˆ’3)2+1 \text{AC} = \sqrt{(h - \sqrt{3})^2 + (-2 - (-1))^2} = \sqrt{(h - \sqrt{3})^2 + (-1)^2} = \sqrt{(h - \sqrt{3})^2 + 1}
  • Distance BC:
BC=(xCβˆ’xB)2+(yCβˆ’yB)2 \text{BC} = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}

Substituting the coordinates of B(0,2)B(0, 2) and C(h,βˆ’2)C(h, -2):

BC=(hβˆ’0)2+(βˆ’2βˆ’2)2=h2+(βˆ’4)2=h2+16 \text{BC} = \sqrt{(h - 0)^2 + (-2 - 2)^2} = \sqrt{h^2 + (-4)^2} = \sqrt{h^2 + 16}

Step 3: Set Up the Equation

Now, we use the Pythagorean theorem:

AB2+AC2=BC2\text{AB}^2 + \text{AC}^2 = \text{BC}^2

Substitute the distances into the equation:

(23)2+[(hβˆ’3)2+1]=(h2+16)(2\sqrt{3})^2 + \left[(h - \sqrt{3})^2 + 1\right] = (h^2 + 16)

Simplifying:

12+(hβˆ’3)2+1=h2+1612 + (h - \sqrt{3})^2 + 1 = h^2 + 16 13+(hβˆ’3)2=h2+1613 + (h - \sqrt{3})^2 = h^2 + 16

Step 4: Expand and Solve for hh

First, expand the squared term (hβˆ’3)2(h - \sqrt{3})^2:

(hβˆ’3)2=h2βˆ’2h3+3(h - \sqrt{3})^2 = h^2 - 2h\sqrt{3} + 3

Substitute this into the equation:

13+h2βˆ’2h3+3=h2+1613 + h^2 - 2h\sqrt{3} + 3 = h^2 + 16

Simplifying further:

16+h2βˆ’2h3=h2+1616 + h^2 - 2h\sqrt{3} = h^2 + 16

Cancel out h2h^2 from both sides:

16βˆ’2h3=1616 - 2h\sqrt{3} = 16

Now, subtract 16 from both sides:

βˆ’2h3=0-2h\sqrt{3} = 0

Step 5: Solve for hh

Solving for hh:

h=0h = 0

Thus, the value of hh is 0.


Key Formulas or Methods Used

  • Pythagorean Theorem:
AB2+AC2=BC2 \text{AB}^2 + \text{AC}^2 = \text{BC}^2
  • Distance Formula:
DistanceΒ betweenΒ twoΒ points=(x2βˆ’x1)2+(y2βˆ’y1)2 \text{Distance between two points} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Summary of Steps

  1. Apply the Pythagorean Theorem: AB2+AC2=BC2\text{AB}^2 + \text{AC}^2 = \text{BC}^2.
  2. Calculate the distances AB, AC, and BC using the distance formula.
  3. Set up the equation using the calculated distances.
  4. Simplify the equation and solve for hh.
  5. The solution gives h=0h = 0.