Question Statement
Find the value of h h h such that the points A ( 3 , β 1 ) A(\sqrt{3}, -1) A ( 3 β , β 1 ) , B ( 0 , 2 ) B(0, 2) B ( 0 , 2 ) , and C ( h , β 2 ) C(h, -2) C ( h , β 2 ) are the vertices of a right triangle with the right angle at vertex A A A .
Background and Explanation
This problem involves the use of the Pythagorean Theorem for right-angled triangles. The Pythagorean theorem states that for a right-angled triangle with vertices at A A A , B B B , and C C C (with right angle at A A A ), the following equation holds:
AB 2 + AC 2 = BC 2 \text{AB}^2 + \text{AC}^2 = \text{BC}^2 AB 2 + AC 2 = BC 2
We will apply this to solve for h h h .
Solution
Step 1: Apply the Pythagorean Theorem
We are given that the triangle has a right angle at vertex A A A , so by the Pythagorean Theorem, we have:
AB 2 + AC 2 = BC 2 \text{AB}^2 + \text{AC}^2 = \text{BC}^2 AB 2 + AC 2 = BC 2
Step 2: Calculate the Distance Between Points
AB = ( x B β x A ) 2 + ( y B β y A ) 2 \text{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} AB = ( x B β β x A β ) 2 + ( y B β β y A β ) 2 β
Substituting the coordinates of A ( 3 , β 1 ) A(\sqrt{3}, -1) A ( 3 β , β 1 ) and B ( 0 , 2 ) B(0, 2) B ( 0 , 2 ) :
AB = ( 0 β 3 ) 2 + ( 2 β ( β 1 ) ) 2 = ( 3 ) 2 + 3 2 = 3 + 9 = 12 = 2 3 \text{AB} = \sqrt{(0 - \sqrt{3})^2 + (2 - (-1))^2} = \sqrt{(\sqrt{3})^2 + 3^2} = \sqrt{3 + 9} = \sqrt{12} = 2\sqrt{3} AB = ( 0 β 3 β ) 2 + ( 2 β ( β 1 ) ) 2 β = ( 3 β ) 2 + 3 2 β = 3 + 9 β = 12 β = 2 3 β
AC = ( x C β x A ) 2 + ( y C β y A ) 2 \text{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} AC = ( x C β β x A β ) 2 + ( y C β β y A β ) 2 β
Substituting the coordinates of A ( 3 , β 1 ) A(\sqrt{3}, -1) A ( 3 β , β 1 ) and C ( h , β 2 ) C(h, -2) C ( h , β 2 ) :
AC = ( h β 3 ) 2 + ( β 2 β ( β 1 ) ) 2 = ( h β 3 ) 2 + ( β 1 ) 2 = ( h β 3 ) 2 + 1 \text{AC} = \sqrt{(h - \sqrt{3})^2 + (-2 - (-1))^2} = \sqrt{(h - \sqrt{3})^2 + (-1)^2} = \sqrt{(h - \sqrt{3})^2 + 1} AC = ( h β 3 β ) 2 + ( β 2 β ( β 1 ) ) 2 β = ( h β 3 β ) 2 + ( β 1 ) 2 β = ( h β 3 β ) 2 + 1 β
BC = ( x C β x B ) 2 + ( y C β y B ) 2 \text{BC} = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} BC = ( x C β β x B β ) 2 + ( y C β β y B β ) 2 β
Substituting the coordinates of B ( 0 , 2 ) B(0, 2) B ( 0 , 2 ) and C ( h , β 2 ) C(h, -2) C ( h , β 2 ) :
BC = ( h β 0 ) 2 + ( β 2 β 2 ) 2 = h 2 + ( β 4 ) 2 = h 2 + 16 \text{BC} = \sqrt{(h - 0)^2 + (-2 - 2)^2} = \sqrt{h^2 + (-4)^2} = \sqrt{h^2 + 16} BC = ( h β 0 ) 2 + ( β 2 β 2 ) 2 β = h 2 + ( β 4 ) 2 β = h 2 + 16 β
Step 3: Set Up the Equation
Now, we use the Pythagorean theorem:
AB 2 + AC 2 = BC 2 \text{AB}^2 + \text{AC}^2 = \text{BC}^2 AB 2 + AC 2 = BC 2
Substitute the distances into the equation:
( 2 3 ) 2 + [ ( h β 3 ) 2 + 1 ] = ( h 2 + 16 ) (2\sqrt{3})^2 + \left[(h - \sqrt{3})^2 + 1\right] = (h^2 + 16) ( 2 3 β ) 2 + [ ( h β 3 β ) 2 + 1 ] = ( h 2 + 16 )
Simplifying:
12 + ( h β 3 ) 2 + 1 = h 2 + 16 12 + (h - \sqrt{3})^2 + 1 = h^2 + 16 12 + ( h β 3 β ) 2 + 1 = h 2 + 16
13 + ( h β 3 ) 2 = h 2 + 16 13 + (h - \sqrt{3})^2 = h^2 + 16 13 + ( h β 3 β ) 2 = h 2 + 16
Step 4: Expand and Solve for h h h
First, expand the squared term ( h β 3 ) 2 (h - \sqrt{3})^2 ( h β 3 β ) 2 :
( h β 3 ) 2 = h 2 β 2 h 3 + 3 (h - \sqrt{3})^2 = h^2 - 2h\sqrt{3} + 3 ( h β 3 β ) 2 = h 2 β 2 h 3 β + 3
Substitute this into the equation:
13 + h 2 β 2 h 3 + 3 = h 2 + 16 13 + h^2 - 2h\sqrt{3} + 3 = h^2 + 16 13 + h 2 β 2 h 3 β + 3 = h 2 + 16
Simplifying further:
16 + h 2 β 2 h 3 = h 2 + 16 16 + h^2 - 2h\sqrt{3} = h^2 + 16 16 + h 2 β 2 h 3 β = h 2 + 16
Cancel out h 2 h^2 h 2 from both sides:
16 β 2 h 3 = 16 16 - 2h\sqrt{3} = 16 16 β 2 h 3 β = 16
Now, subtract 16 from both sides:
β 2 h 3 = 0 -2h\sqrt{3} = 0 β 2 h 3 β = 0
Step 5: Solve for h h h
Solving for h h h :
h = 0 h = 0 h = 0
Thus, the value of h h h is 0 .
AB 2 + AC 2 = BC 2 \text{AB}^2 + \text{AC}^2 = \text{BC}^2 AB 2 + AC 2 = BC 2
DistanceΒ betweenΒ twoΒ points = ( x 2 β x 1 ) 2 + ( y 2 β y 1 ) 2 \text{Distance between two points} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} DistanceΒ betweenΒ twoΒ points = ( x 2 β β x 1 β ) 2 + ( y 2 β β y 1 β ) 2 β
Summary of Steps
Apply the Pythagorean Theorem: AB 2 + AC 2 = BC 2 \text{AB}^2 + \text{AC}^2 = \text{BC}^2 AB 2 + AC 2 = BC 2 .
Calculate the distances AB, AC, and BC using the distance formula.
Set up the equation using the calculated distances.
Simplify the equation and solve for h h h .
The solution gives h = 0 h = 0 h = 0 .