Question Statement
Find the coordinates of point P referred to the translated axes Oβ²X and Oβ²Y, given the points in the xy-coordinate system.
Background and Explanation
This problem involves translating a point from one coordinate system to another. To do so, we need to subtract the origin coordinates of the translated axes from the original coordinates of point P. The general formula for translating the point is:
xβ²=xβh,yβ²=yβk
Where:
- (x,y) are the original coordinates of the point P,
- (h,k) are the coordinates of the translated origin point Oβ²,
- (xβ²,yβ²) are the new coordinates of point P in the translated system.
Solution
i. For P(3, 2) and Oβ(1, 3)
Here, we have:
- P(3,2), and
- Oβ²(1,3).
Now, apply the translation formulas:
- xβ²=xβh=3β1=2,
- yβ²=yβk=2β3=β1.
Thus, the new coordinates of P are:
Pβ²(2,β1).
ii. For P(-2, 6) and Oβ(-3, 2)
Here, we have:
- P(β2,6), and
- Oβ²(β3,2).
Now, apply the translation formulas:
- xβ²=xβh=β2β(β3)=β2+3=1,
- yβ²=yβk=6β2=4.
Thus, the new coordinates of P are:
Pβ²(1,4).
iii. For P(-6, -8) and Oβ(-4, -6)
Here, we have:
- P(β6,β8), and
- Oβ²(β4,β6).
Now, apply the translation formulas:
- xβ²=xβh=β6β(β4)=β6+4=β2,
- yβ²=yβk=β8β(β6)=β8+6=β2.
Thus, the new coordinates of P are:
Pβ²(β2,β2).
iv. For P(3/2, 5/2) and Oβ(-1/2, 7/2)
Here, we have:
- P(23β,25β), and
- Oβ²(2β1β,27β).
Now, apply the translation formulas:
- xβ²=xβh=23ββ2β1β=23β+21β=2,
- yβ²=yβk=25ββ27β=25β7β=2β2β=β1.
Thus, the new coordinates of P are:
Pβ²(2,β1).
- Translation of Coordinates:
xβ²=xβh,yβ²=yβk
Where (x,y) are the original coordinates of point P, and (h,k) are the coordinates of the translated origin point Oβ².
Summary of Steps
- Identify the coordinates of point P and the translated origin Oβ².
- Use the translation formula xβ²=xβh and yβ²=yβk to find the new coordinates.
- Repeat for all given points and their respective origins.