Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.2 Q-1

Question Statement

Find the coordinates of point P referred to the translated axes Oβ€²XO'X and Oβ€²YO'Y, given the points in the xy-coordinate system.


Background and Explanation

This problem involves translating a point from one coordinate system to another. To do so, we need to subtract the origin coordinates of the translated axes from the original coordinates of point P. The general formula for translating the point is:

xβ€²=xβˆ’h,yβ€²=yβˆ’kx' = x - h, \quad y' = y - k

Where:

  • (x,y)(x, y) are the original coordinates of the point P,
  • (h,k)(h, k) are the coordinates of the translated origin point Oβ€²O',
  • (xβ€²,yβ€²)(x', y') are the new coordinates of point P in the translated system.

Solution

i. For P(3, 2) and O’(1, 3)

Here, we have:

  • P(3,2)P(3, 2), and
  • Oβ€²(1,3)O'(1, 3).

Now, apply the translation formulas:

  • xβ€²=xβˆ’h=3βˆ’1=2x' = x - h = 3 - 1 = 2,
  • yβ€²=yβˆ’k=2βˆ’3=βˆ’1y' = y - k = 2 - 3 = -1.

Thus, the new coordinates of P are:

Pβ€²(2,βˆ’1).P'(2, -1).

ii. For P(-2, 6) and O’(-3, 2)

Here, we have:

  • P(βˆ’2,6)P(-2, 6), and
  • Oβ€²(βˆ’3,2)O'(-3, 2).

Now, apply the translation formulas:

  • xβ€²=xβˆ’h=βˆ’2βˆ’(βˆ’3)=βˆ’2+3=1x' = x - h = -2 - (-3) = -2 + 3 = 1,
  • yβ€²=yβˆ’k=6βˆ’2=4y' = y - k = 6 - 2 = 4.

Thus, the new coordinates of P are:

Pβ€²(1,4).P'(1, 4).

iii. For P(-6, -8) and O’(-4, -6)

Here, we have:

  • P(βˆ’6,βˆ’8)P(-6, -8), and
  • Oβ€²(βˆ’4,βˆ’6)O'(-4, -6).

Now, apply the translation formulas:

  • xβ€²=xβˆ’h=βˆ’6βˆ’(βˆ’4)=βˆ’6+4=βˆ’2x' = x - h = -6 - (-4) = -6 + 4 = -2,
  • yβ€²=yβˆ’k=βˆ’8βˆ’(βˆ’6)=βˆ’8+6=βˆ’2y' = y - k = -8 - (-6) = -8 + 6 = -2.

Thus, the new coordinates of P are:

Pβ€²(βˆ’2,βˆ’2).P'(-2, -2).

iv. For P(3/2, 5/2) and O’(-1/2, 7/2)

Here, we have:

  • P(32,52)P\left(\frac{3}{2}, \frac{5}{2}\right), and
  • Oβ€²(βˆ’12,72)O'\left(\frac{-1}{2}, \frac{7}{2}\right).

Now, apply the translation formulas:

  • xβ€²=xβˆ’h=32βˆ’βˆ’12=32+12=2x' = x - h = \frac{3}{2} - \frac{-1}{2} = \frac{3}{2} + \frac{1}{2} = 2,
  • yβ€²=yβˆ’k=52βˆ’72=5βˆ’72=βˆ’22=βˆ’1y' = y - k = \frac{5}{2} - \frac{7}{2} = \frac{5 - 7}{2} = \frac{-2}{2} = -1.

Thus, the new coordinates of P are:

Pβ€²(2,βˆ’1).P'(2, -1).

Key Formulas or Methods Used

  • Translation of Coordinates:
xβ€²=xβˆ’h,yβ€²=yβˆ’kx' = x - h, \quad y' = y - k

Where (x,y)(x, y) are the original coordinates of point P, and (h,k)(h, k) are the coordinates of the translated origin point Oβ€²O'.


Summary of Steps

  1. Identify the coordinates of point P and the translated origin Oβ€²O'.
  2. Use the translation formula xβ€²=xβˆ’hx' = x - h and yβ€²=yβˆ’ky' = y - k to find the new coordinates.
  3. Repeat for all given points and their respective origins.