Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.2 Q-3

Question Statement

The problem involves rotating the coordinate axes about the origin by a specified angle and finding the new coordinates of a point in the rotated system. The task is to apply this transformation to several given points.


Background and Explanation

To solve this, we need to understand the concept of rotating coordinate axes. When the axes are rotated by an angle θ\theta, the coordinates of a point change according to the following transformation formulas:

  • For the new X-coordinate:
X=xcosθ+ysinθ X = x \cos \theta + y \sin \theta
  • For the new Y-coordinate:
Y=xsinθ+ycosθ Y = -x \sin \theta + y \cos \theta

Where (x,y)(x, y) are the coordinates in the original system and (X,Y)(X, Y) are the coordinates in the rotated system.


Solution

i. P(5,3),θ=45\mathbf{P(5, 3)}, \theta = 45^\circ

We are given the point P(5,3)P(5, 3) and the rotation angle θ=45\theta = 45^\circ. We can use the transformation formulas to find the new coordinates.

  1. Calculate X-coordinate:
X=5cos45+3sin45=52+32=82=42 X = 5 \cos 45^\circ + 3 \sin 45^\circ = \frac{5}{\sqrt{2}} + \frac{3}{\sqrt{2}} = \frac{8}{\sqrt{2}} = 4 \sqrt{2}
  1. Calculate Y-coordinate:
Y=5sin45+3cos45=52+32=22=2 Y = -5 \sin 45^\circ + 3 \cos 45^\circ = \frac{-5}{\sqrt{2}} + \frac{3}{\sqrt{2}} = \frac{-2}{\sqrt{2}} = -\sqrt{2}

Thus, the new coordinates are P(42,2)P(4 \sqrt{2}, -\sqrt{2}).


ii. P(3,7),θ=30\mathbf{P(3, -7)}, \theta = 30^\circ

Now, we apply the transformation to the point P(3,7)P(3, -7) with θ=30\theta = 30^\circ.

  1. Calculate X-coordinate:
X=3cos30+(7)sin30=3(32)7(12)=3372 X = 3 \cos 30^\circ + (-7) \sin 30^\circ = 3 \left( \frac{\sqrt{3}}{2} \right) - 7 \left( \frac{1}{2} \right) = \frac{3\sqrt{3} - 7}{2}
  1. Calculate Y-coordinate:
Y=3sin30+(7)cos30=3(12)7(32)=7332 Y = -3 \sin 30^\circ + (-7) \cos 30^\circ = -3 \left( \frac{1}{2} \right) - 7 \left( \frac{\sqrt{3}}{2} \right) = \frac{-7 - 3\sqrt{3}}{2}

Thus, the new coordinates are P(3372,7332)P\left( \frac{3\sqrt{3} - 7}{2}, \frac{-7 - 3\sqrt{3}}{2} \right).


iii. P(11,15),θ=60\mathbf{P(11, -15)}, \theta = 60^\circ

For this point, we have P(11,15)P(11, -15) and θ=60\theta = 60^\circ. Let’s apply the transformation.

  1. Calculate X-coordinate:
X=11cos60+(15)sin60=11(12)15(32)=111532 X = 11 \cos 60^\circ + (-15) \sin 60^\circ = 11 \left( \frac{1}{2} \right) - 15 \left( \frac{\sqrt{3}}{2} \right) = \frac{11 - 15\sqrt{3}}{2}
  1. Calculate Y-coordinate:
Y=11sin60+(15)cos60=11(32)15(12)=111532 Y = -11 \sin 60^\circ + (-15) \cos 60^\circ = -11 \left( \frac{\sqrt{3}}{2} \right) - 15 \left( \frac{1}{2} \right) = \frac{-11 - 15\sqrt{3}}{2}

Thus, the new coordinates are P(111532,111532)P\left( \frac{11 - 15\sqrt{3}}{2}, \frac{-11 - 15\sqrt{3}}{2} \right).


iv. P(15,10),θ=arctan(12)\mathbf{P(15, 10)}, \theta = \arctan\left(\frac{1}{2}\right)

Finally, for the point P(15,10)P(15, 10) and θ=arctan(12)\theta = \arctan\left(\frac{1}{2}\right), we follow the same procedure.

  1. Find cosθ\cos \theta and sinθ\sin \theta: Using the identity tanθ=12\tan \theta = \frac{1}{2}, we find:
sinθ=110,cosθ=310 \sin \theta = \frac{1}{\sqrt{10}}, \quad \cos \theta = \frac{3}{\sqrt{10}}
  1. Calculate X-coordinate:
X=15cosθ+10sinθ=15(310)+10(110)=45+1010=5510 X = 15 \cos \theta + 10 \sin \theta = 15 \left( \frac{3}{\sqrt{10}} \right) + 10 \left( \frac{1}{\sqrt{10}} \right) = \frac{45 + 10}{\sqrt{10}} = \frac{55}{\sqrt{10}}
  1. Calculate Y-coordinate:
Y=15sinθ+10cosθ=15(110)+10(310)=15+3010=4510 Y = 15 \sin \theta + 10 \cos \theta = 15 \left( \frac{1}{\sqrt{10}} \right) + 10 \left( \frac{3}{\sqrt{10}} \right) = \frac{15 + 30}{\sqrt{10}} = \frac{45}{\sqrt{10}}

Thus, the new coordinates are P(5510,4510)P\left( \frac{55}{\sqrt{10}}, \frac{45}{\sqrt{10}} \right).


Key Formulas or Methods Used

  • Transformation for X-coordinate:
X=xcosθ+ysinθ X = x \cos \theta + y \sin \theta
  • Transformation for Y-coordinate:
Y=xsinθ+ycosθ Y = -x \sin \theta + y \cos \theta

Summary of Steps

  1. Identify the point’s original coordinates (x,y)(x, y) and the angle of rotation θ\theta.
  2. Apply the transformation formulas to calculate the new X and Y coordinates:
    • X=xcosθ+ysinθX = x \cos \theta + y \sin \theta
    • Y=xsinθ+ycosθY = -x \sin \theta + y \cos \theta
  3. Simplify the expressions to find the new coordinates (X,Y)(X, Y).