Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.2 Q-4

Question Statement

The xx-yy coordinate axes are rotated about the origin through the indicated angle. The new axes are OX and OY. Find the XY-coordinates of the point PP with the given XY coordinates.

ii. P(βˆ’5,3),ΞΈ=30∘P(-5, 3), \theta = 30^{\circ}


Background and Explanation

In problems involving the rotation of coordinate axes, we use rotation formulas to transform the coordinates of a point from the original xyxy system to the new XYXY system. The formulas are based on trigonometric identities, where the new coordinates XX and YY are expressed in terms of the original coordinates xx and yy and the rotation angle ΞΈ\theta.


Solution

We are given the coordinates of point P(βˆ’5,3)P(-5, 3) in the original xyxy system, and we need to find the new coordinates after rotating the axes by an angle ΞΈ=30∘\theta = 30^\circ.

Step 1: Apply the rotation formulas

The general rotation formulas are:

X=xcos⁑θ+ysin⁑θX = x \cos \theta + y \sin \theta Y=βˆ’xsin⁑θ+ycos⁑θY = -x \sin \theta + y \cos \theta

Substitute the given values of x=βˆ’5x = -5, y=3y = 3, and ΞΈ=30∘\theta = 30^\circ:

For XX:

X=(βˆ’5)cos⁑30∘+3sin⁑30∘X = (-5) \cos 30^\circ + 3 \sin 30^\circ

Using known values for cos⁑30∘=32\cos 30^\circ = \frac{\sqrt{3}}{2} and sin⁑30∘=12\sin 30^\circ = \frac{1}{2}:

X=(βˆ’5)(32)+3(12)X = (-5) \left(\frac{\sqrt{3}}{2}\right) + 3 \left(\frac{1}{2}\right) X=βˆ’532+32X = \frac{-5 \sqrt{3}}{2} + \frac{3}{2} X=βˆ’53+32X = \frac{-5 \sqrt{3} + 3}{2}

For YY:

Y=βˆ’(βˆ’5)sin⁑30∘+3cos⁑30∘Y = -(-5) \sin 30^\circ + 3 \cos 30^\circ

Substitute the values for sin⁑30∘\sin 30^\circ and cos⁑30∘\cos 30^\circ:

Y=5(12)+3(32)Y = 5 \left(\frac{1}{2}\right) + 3 \left(\frac{\sqrt{3}}{2}\right) Y=52+332Y = \frac{5}{2} + \frac{3\sqrt{3}}{2} Y=5+332Y = \frac{5 + 3\sqrt{3}}{2}

Thus, the new coordinates of the point PP in the rotated coordinate system are:

P(βˆ’53+32,5+332)P\left(\frac{-5 \sqrt{3} + 3}{2}, \frac{5 + 3 \sqrt{3}}{2}\right)

Key Formulas or Methods Used

  • Rotation Transformation Formula:
    • X=xcos⁑θ+ysin⁑θX = x \cos \theta + y \sin \theta
    • Y=βˆ’xsin⁑θ+ycos⁑θY = -x \sin \theta + y \cos \theta

Where:

  • x,yx, y are the coordinates in the original system
  • X,YX, Y are the coordinates in the rotated system
  • ΞΈ\theta is the angle of rotation

Summary of Steps

  1. Write down the rotation transformation formulas:

    • X=xcos⁑θ+ysin⁑θX = x \cos \theta + y \sin \theta
    • Y=βˆ’xsin⁑θ+ycos⁑θY = -x \sin \theta + y \cos \theta
  2. Substitute the given values for x=βˆ’5x = -5, y=3y = 3, and ΞΈ=30∘\theta = 30^\circ into the formulas.

  3. Solve for XX:

    • Use the trigonometric values for cos⁑30∘\cos 30^\circ and sin⁑30∘\sin 30^\circ to calculate XX.
  4. Solve for YY:

    • Use the same trigonometric values to calculate YY.
  5. Write the final result for the new coordinates PP in the rotated system:

    • P(βˆ’53+32,5+332)P\left(\frac{-5 \sqrt{3} + 3}{2}, \frac{5 + 3 \sqrt{3}}{2}\right)