Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.3 Q-15

Question Statement

Given points A(βˆ’1,2)A(-1, 2), B(6,3)B(6, 3), and C(2,βˆ’4)C(2, -4) as the vertices of a triangle, show that the line joining the mid-points DD of ABAB and EE of ACAC is parallel to BCBC, and that DE=12BCDE = \frac{1}{2} BC.


Background and Explanation

To solve this problem, we need:

  1. Midpoint Formula: The midpoint of a line segment joining two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by:
    (x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)

  2. Slope Formula: The slope of a line joining two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by:
    slope=y2βˆ’y1x2βˆ’x1\text{slope} = \frac{y_2 - y_1}{x_2 - x_1}
    Parallel lines have the same slope.

  3. Distance Formula: The distance between two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is:
    distance=(x2βˆ’x1)2+(y2βˆ’y1)2\text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}


Solution

  1. Find the Midpoints DD and EE:

    • Midpoint DD of ABAB:
      D=(βˆ’1+62,2+32)=D(52,52)D = \left( \frac{-1 + 6}{2}, \frac{2 + 3}{2} \right) = D \left( \frac{5}{2}, \frac{5}{2} \right)
    • Midpoint EE of ACAC:
      E=(βˆ’1+22,2βˆ’42)=E(12,βˆ’1)E = \left( \frac{-1 + 2}{2}, \frac{2 - 4}{2} \right) = E \left( \frac{1}{2}, -1 \right)
  2. Find the Slopes of DEDE and BCBC:

    • Slope of DEDE:
      slopeΒ ofΒ DE=βˆ’1βˆ’5212βˆ’52=βˆ’72βˆ’42=74\text{slope of } DE = \frac{-1 - \frac{5}{2}}{\frac{1}{2} - \frac{5}{2}} = \frac{-\frac{7}{2}}{-\frac{4}{2}} = \frac{7}{4}
    • Slope of BCBC:
      slopeΒ ofΒ BC=βˆ’4βˆ’32βˆ’6=βˆ’7βˆ’4=74\text{slope of } BC = \frac{-4 - 3}{2 - 6} = \frac{-7}{-4} = \frac{7}{4}

    Since the slopes of DEDE and BCBC are equal, we conclude that:
    DEβ€Ύβˆ₯BCβ€Ύ\overline{DE} \parallel \overline{BC}

  3. Verify that DE=12BCDE = \frac{1}{2} BC:

    • Distance DEDE:
      ∣DEβ€Ύ=(12βˆ’52)2+(βˆ’1βˆ’52)2=(βˆ’42)2+(βˆ’72)2\mid \overline{DE} = \sqrt{\left( \frac{1}{2} - \frac{5}{2} \right)^2 + \left( -1 - \frac{5}{2} \right)^2} = \sqrt{\left( \frac{-4}{2} \right)^2 + \left( \frac{-7}{2} \right)^2}
      =164+494=654=652= \sqrt{\frac{16}{4} + \frac{49}{4}} = \sqrt{\frac{65}{4}} = \frac{\sqrt{65}}{2}
    • Distance BCBC:
      ∣BCβ€Ύ=(2βˆ’6)2+(βˆ’4βˆ’3)2=16+49=65\mid \overline{BC} = \sqrt{(2 - 6)^2 + (-4 - 3)^2} = \sqrt{16 + 49} = \sqrt{65}

    Since DE=12BCDE = \frac{1}{2} BC, we conclude:
    DE=12BCD E = \frac{1}{2} B C


Key Formulas or Methods Used

  • Midpoint Formula:
    (x1+x22,y1+y22)\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)

  • Slope Formula:
    slope=y2βˆ’y1x2βˆ’x1\text{slope} = \frac{y_2 - y_1}{x_2 - x_1}
    Used to determine parallelism.

  • Distance Formula:
    distance=(x2βˆ’x1)2+(y2βˆ’y1)2\text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
    Used to check if DE=12BCDE = \frac{1}{2} BC.


Summary of Steps

  1. Find the midpoints DD and EE using the midpoint formula.
  2. Find the slopes of DEDE and BCBC using the slope formula.
  3. Check parallelism by comparing the slopes of DEDE and BCBC.
  4. Calculate the distances DEDE and BCBC and verify that DE=12BCDE = \frac{1}{2} BC.