Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.3 Q-21

Question Statement

Convert each of the following equations to:

  1. Slope-intercept form
  2. Intercept form
  3. Normal form

Additionally, find the length of the perpendicular from (0,0)(0, 0) to each line.

Given equations: a. 2xβˆ’4y+11=02x - 4y + 11 = 0 b. 4x+7yβˆ’2=04x + 7y - 2 = 0 c. 15yβˆ’8x+3=015y - 8x + 3 = 0


Background and Explanation

To solve this, we need to express each equation in three different forms:

  1. Slope-intercept form: This is of the form y=mx+cy = mx + c, where mm is the slope and cc is the y-intercept.
  2. Intercept form: This is expressed as xa+yb=1\frac{x}{a} + \frac{y}{b} = 1, where aa and bb are the x- and y-intercepts, respectively.
  3. Normal form: This form is AxA2+B2+ByA2+B2=CA2+B2\frac{Ax}{\sqrt{A^2 + B^2}} + \frac{By}{\sqrt{A^2 + B^2}} = \frac{C}{\sqrt{A^2 + B^2}}, which expresses the line in terms of its normal vector.

The length of the perpendicular from the origin to the line can be found using the normal form, where the formula is: Length=∣C∣A2+B2\text{Length} = \frac{|C|}{\sqrt{A^2 + B^2}}


Solution

a. Equation: 2xβˆ’4y+11=02x - 4y + 11 = 0

i. Slope-intercept form

Rearrange the equation to solve for yy:

2xβˆ’4y+11=0β€…β€ŠβŸΉβ€…β€Š4y=2x+11β€…β€ŠβŸΉβ€…β€Šy=24x+114β€…β€ŠβŸΉβ€…β€Šy=14x+1142x - 4y + 11 = 0 \implies 4y = 2x + 11 \implies y = \frac{2}{4}x + \frac{11}{4} \implies y = \frac{1}{4}x + \frac{11}{4}

So, the slope-intercept form is: y=14x+114y = \frac{1}{4}x + \frac{11}{4}

ii. Intercept form

Rearrange the equation to find the intercepts:

2xβˆ’4y=βˆ’11β€…β€ŠβŸΉβ€…β€Š2xβˆ’11+4yβˆ’11=1β€…β€ŠβŸΉβ€…β€Šx112+y114=12x - 4y = -11 \implies \frac{2x}{-11} + \frac{4y}{-11} = 1 \implies \frac{x}{\frac{11}{2}} + \frac{y}{\frac{11}{4}} = 1

So, the intercept form is: x112+y114=1\frac{x}{\frac{11}{2}} + \frac{y}{\frac{11}{4}} = 1

iii. Normal form

To convert to normal form, first find the length of the normal vector:

NormalΒ length=(2)2+(βˆ’4)2=4+16=20\text{Normal length} = \sqrt{(2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20}

Then, divide the equation by 20\sqrt{20}:

220xβˆ’420y=1125β€…β€ŠβŸΉβ€…β€Š15xβˆ’25y=1125\frac{2}{\sqrt{20}}x - \frac{4}{\sqrt{20}}y = \frac{11}{2\sqrt{5}} \implies \frac{1}{\sqrt{5}}x - \frac{2}{\sqrt{5}}y = \frac{11}{2\sqrt{5}}

So, the normal form is: 15xβˆ’25y=1125\frac{1}{\sqrt{5}}x - \frac{2}{\sqrt{5}}y = \frac{11}{2\sqrt{5}}


b. Equation: 4x+7yβˆ’2=04x + 7y - 2 = 0

i. Slope-intercept form

Rearrange the equation to solve for yy:

4x+7yβˆ’2=0β€…β€ŠβŸΉβ€…β€Š7y=βˆ’4x+2β€…β€ŠβŸΉβ€…β€Šy=βˆ’4x+27β€…β€ŠβŸΉβ€…β€Šy=βˆ’47x+274x + 7y - 2 = 0 \implies 7y = -4x + 2 \implies y = \frac{-4x + 2}{7} \implies y = \frac{-4}{7}x + \frac{2}{7}

So, the slope-intercept form is: y=βˆ’47x+27y = \frac{-4}{7}x + \frac{2}{7}

ii. Intercept form

Rearrange the equation:

4x+7y=2β€…β€ŠβŸΉβ€…β€Š4x2+7y2=1β€…β€ŠβŸΉβ€…β€Šx12+y27=14x + 7y = 2 \implies \frac{4x}{2} + \frac{7y}{2} = 1 \implies \frac{x}{\frac{1}{2}} + \frac{y}{\frac{2}{7}} = 1

So, the intercept form is: x12+y27=1\frac{x}{\frac{1}{2}} + \frac{y}{\frac{2}{7}} = 1

iii. Normal form

First, calculate the length of the normal vector:

NormalΒ length=(4)2+(7)2=16+49=65\text{Normal length} = \sqrt{(4)^2 + (7)^2} = \sqrt{16 + 49} = \sqrt{65}

Then, divide the equation by 65\sqrt{65}:

465x+765y=265\frac{4}{\sqrt{65}}x + \frac{7}{\sqrt{65}}y = \frac{2}{\sqrt{65}}

So, the normal form is: 465x+765y=265\frac{4}{\sqrt{65}}x + \frac{7}{\sqrt{65}}y = \frac{2}{\sqrt{65}}


c. Equation: 15yβˆ’8x+3=015y - 8x + 3 = 0

i. Slope-intercept form

Rearrange the equation to solve for yy:

15yβˆ’8x+3=0β€…β€ŠβŸΉβ€…β€Š15y=8xβˆ’3β€…β€ŠβŸΉβ€…β€Šy=815xβˆ’31515y - 8x + 3 = 0 \implies 15y = 8x - 3 \implies y = \frac{8}{15}x - \frac{3}{15}

So, the slope-intercept form is: y=815xβˆ’315y = \frac{8}{15}x - \frac{3}{15}

ii. Intercept form

Rearrange the equation:

15yβˆ’8x=βˆ’3β€…β€ŠβŸΉβ€…β€Šβˆ’8βˆ’3x+15βˆ’3y=βˆ’3βˆ’3β€…β€ŠβŸΉβ€…β€Šx3+y5=115y - 8x = -3 \implies \frac{-8}{-3}x + \frac{15}{-3}y = \frac{-3}{-3} \implies \frac{x}{3} + \frac{y}{5} = 1

So, the intercept form is: x3+y5=1\frac{x}{3} + \frac{y}{5} = 1

iii. Normal form

First, calculate the length of the normal vector:

NormalΒ length=(8)2+(15)2=64+225=289=17\text{Normal length} = \sqrt{(8)^2 + (15)^2} = \sqrt{64 + 225} = \sqrt{289} = 17

Then, divide the equation by 1717:

βˆ’817x+1517y=βˆ’317β€…β€ŠβŸΉβ€…β€Š817xβˆ’1517y=317\frac{-8}{17}x + \frac{15}{17}y = \frac{-3}{17} \implies \frac{8}{17}x - \frac{15}{17}y = \frac{3}{17}

So, the normal form is: 817xβˆ’1517y=317\frac{8}{17}x - \frac{15}{17}y = \frac{3}{17}


Key Formulas or Methods Used

  • Slope-Intercept Form: y=mx+cy = mx + c
  • Intercept Form: xa+yb=1\frac{x}{a} + \frac{y}{b} = 1
  • Normal Form: AxA2+B2+ByA2+B2=CA2+B2\frac{Ax}{\sqrt{A^2 + B^2}} + \frac{By}{\sqrt{A^2 + B^2}} = \frac{C}{\sqrt{A^2 + B^2}}
  • Length of Perpendicular from the Origin: Length=∣C∣A2+B2\text{Length} = \frac{|C|}{\sqrt{A^2 + B^2}}

Summary of Steps

  1. Convert the equation to Slope-Intercept Form: Solve for yy.
  2. Convert to Intercept Form: Isolate xx and yy on opposite sides.
  3. Convert to Normal Form: Calculate the normal vector and adjust the equation.
  4. Calculate the Length of the Perpendicular using the normal form formula.