Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.3 Q-27

Question Statement

Find the three remaining vertices of a parallelogram if one vertex is A(1,4)A(1, 4), the diagonals intersect at (2,1)(2, 1), and the sides have slopes of 11 and βˆ’1-1.


Background and Explanation

A parallelogram has the following properties:

  1. Diagonals bisect each other: The point where the diagonals intersect is the midpoint of both diagonals.
  2. Opposite sides are parallel and have the same slope: This is useful for finding equations of lines connecting the vertices.
  3. Coordinate Geometry Basics: The slope formula and midpoint formula will be applied here:
    • Slope Formula: m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}
    • Midpoint Formula: M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).

Solution

Let the vertices of the parallelogram be A(1,4)A(1, 4), B(a,b)B(a, b), C(c,d)C(c, d), and D(e,f)D(e, f). The diagonals intersect at M(2,1)M(2, 1), which is the midpoint of both diagonals.

Step 1: Using the Midpoint Formula

Using MM as the midpoint of ACβ€Ύ\overline{AC}, we have:

1+c2=2and4+d2=1\frac{1 + c}{2} = 2 \quad \text{and} \quad \frac{4 + d}{2} = 1

Solving for cc and dd:

1+c=4β‡’c=31 + c = 4 \quad \Rightarrow \quad c = 3 4+d=2β‡’d=βˆ’24 + d = 2 \quad \Rightarrow \quad d = -2

Thus, vertex CC is (3,βˆ’2)(3, -2).

Step 2: Using the Slope of the Sides

The sides of the parallelogram have slopes 11 and βˆ’1-1. Using this information:

  • Slope of ADβ€Ύ=1\overline{AD} = 1:
fβˆ’4eβˆ’1=1β‡’fβˆ’4=eβˆ’1β‡’eβˆ’f+3=0(1)\frac{f - 4}{e - 1} = 1 \quad \Rightarrow \quad f - 4 = e - 1 \quad \Rightarrow \quad e - f + 3 = 0 \tag{1}
  • Slope of BCβ€Ύ=1\overline{BC} = 1:
dβˆ’bcβˆ’a=1β‡’βˆ’2βˆ’b3βˆ’a=1β‡’βˆ’2βˆ’b=aβˆ’3β‡’aβˆ’bβˆ’5=0(2)\frac{d - b}{c - a} = 1 \quad \Rightarrow \quad \frac{-2 - b}{3 - a} = 1 \quad \Rightarrow \quad -2 - b = a - 3 \quad \Rightarrow \quad a - b - 5 = 0 \tag{2}
  • Slope of ABβ€Ύ=βˆ’1\overline{AB} = -1:
bβˆ’4aβˆ’1=βˆ’1β‡’bβˆ’4=βˆ’a+1β‡’a+bβˆ’5=0(3)\frac{b - 4}{a - 1} = -1 \quad \Rightarrow \quad b - 4 = -a + 1 \quad \Rightarrow \quad a + b - 5 = 0 \tag{3}
  • Slope of CDβ€Ύ=βˆ’1\overline{CD} = -1:
fβˆ’deβˆ’c=βˆ’1β‡’f+2eβˆ’3=βˆ’1β‡’f+2=βˆ’e+3β‡’e+f+11=0(4)\frac{f - d}{e - c} = -1 \quad \Rightarrow \quad \frac{f + 2}{e - 3} = -1 \quad \Rightarrow \quad f + 2 = -e + 3 \quad \Rightarrow \quad e + f + 11 = 0 \tag{4}

Step 3: Solving the Equations

We now solve the system of equations:

  1. From (2) and (3):
aβˆ’bβˆ’5=0anda+bβˆ’5=0a - b - 5 = 0 \quad \text{and} \quad a + b - 5 = 0

Adding the equations:

2a=10β‡’a=52a = 10 \quad \Rightarrow \quad a = 5

Substituting a=5a = 5 into (2):

5βˆ’bβˆ’5=0β‡’b=35 - b - 5 = 0 \quad \Rightarrow \quad b = 3

Thus, vertex BB is (5,3)(5, 3).

  1. From (1) and (4):
eβˆ’f+3=0ande+f+11=0e - f + 3 = 0 \quad \text{and} \quad e + f + 11 = 0

Adding the equations:

2e+14=0β‡’e=βˆ’72e + 14 = 0 \quad \Rightarrow \quad e = -7

Substituting e=βˆ’7e = -7 into (1):

βˆ’7βˆ’f+3=0β‡’f=βˆ’4-7 - f + 3 = 0 \quad \Rightarrow \quad f = -4

Thus, vertex DD is (βˆ’7,βˆ’4)(-7, -4).


Key Formulas or Methods Used

  • Midpoint Formula: M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
  • Slope Formula: m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}
  • Properties of a Parallelogram:
    • Diagonals bisect each other.
    • Opposite sides are parallel and have the same slope.

Summary of Steps

  1. Use the midpoint formula to find C(3,βˆ’2)C(3, -2).
  2. Use the slope condition to establish equations for A,B,C,DA, B, C, D.
  3. Solve the system of equations to find:
    • B(5,3)B(5, 3)
    • D(βˆ’7,βˆ’4)D(-7, -4).