Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.3 Q-30

Question Statement

Find the distance from the point P(6,βˆ’1)P(6, -1) to the line 6xβˆ’4y+9=06x - 4y + 9 = 0.


Background and Explanation

The shortest distance from a point to a line is a perpendicular distance. To calculate this, we use the distance formula for a point and a line:

d=∣ax1+by1+c∣a2+b2d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}

where:

  • aa, bb, and cc are coefficients from the line equation ax+by+c=0ax + by + c = 0,
  • (x1,y1)(x_1, y_1) is the given point,
  • dd is the perpendicular distance.

Solution

Step 1: Write down the given values

  • Point: P(6,βˆ’1)P(6, -1)
  • Line: 6xβˆ’4y+9=06x - 4y + 9 = 0

From the line equation:

a=6,b=βˆ’4,c=9a = 6, \quad b = -4, \quad c = 9

Step 2: Apply the distance formula

The distance formula is:

d=∣ax1+by1+c∣a2+b2d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}

Substitute the given values:

d=∣6(6)+(βˆ’4)(βˆ’1)+9∣62+(βˆ’4)2d = \frac{|6(6) + (-4)(-1) + 9|}{\sqrt{6^2 + (-4)^2}}

Step 3: Simplify the numerator

First, calculate 6(6)6(6):

6(6)=366(6) = 36

Next, calculate (βˆ’4)(βˆ’1)(-4)(-1):

(βˆ’4)(βˆ’1)=4(-4)(-1) = 4

Add the terms in the numerator:

36+4+9=4936 + 4 + 9 = 49

So, the numerator is ∣49∣=49|49| = 49.

Step 4: Simplify the denominator

Compute 626^2 and (βˆ’4)2(-4)^2:

62=36,(βˆ’4)2=166^2 = 36, \quad (-4)^2 = 16

Add these values:

36+16=5236 + 16 = 52

Take the square root:

52=213\sqrt{52} = 2\sqrt{13}

Step 5: Calculate the distance

Combine the numerator and denominator:

d=49213d = \frac{49}{2\sqrt{13}}

This is the required distance.


Key Formulas or Methods Used

  • Distance formula (Point to Line):
d=∣ax1+by1+c∣a2+b2 d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}
  • Simplification of algebraic expressions.

Summary of Steps

  1. Identify aa, bb, cc from the line equation and the coordinates (x1,y1)(x_1, y_1) of the point.
  2. Substitute the values into the distance formula:
d=∣ax1+by1+c∣a2+b2 d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}
  1. Simplify the numerator and denominator step-by-step.
  2. Finalize the result as d=49213d = \frac{49}{2\sqrt{13}}.