Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.3 Q-31

Question Statement

Find the area of the triangular region whose vertices are:

A(5,3),,B(βˆ’2,2),,C(4,2)A(5, 3), , B(-2, 2), , C(4, 2)

Background and Explanation

To find the area of a triangle when its vertices are given, we use the determinant formula for the area of a triangle. This method calculates the area using the coordinates of the vertices:

Ξ”=12∣x1(y2βˆ’y3)+x2(y3βˆ’y1)+x3(y1βˆ’y2)∣\Delta = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|

Where:

  • (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), and (x3,y3)(x_3, y_3) are the coordinates of the vertices.

This formula is derived from the determinant of a matrix representing the triangle’s vertices. It ensures a positive area regardless of vertex ordering.


Solution

Step 1: Write down the given vertices

The vertices of the triangle are:

A(5,3),,B(βˆ’2,2),,C(4,2)A(5, 3), , B(-2, 2), , C(4, 2)

Assign:

(x1,y1)=(5,3),(x2,y2)=(βˆ’2,2),(x3,y3)=(4,2)(x_1, y_1) = (5, 3), \quad (x_2, y_2) = (-2, 2), \quad (x_3, y_3) = (4, 2)

Step 2: Apply the determinant formula

Substitute the coordinates into the formula:

Ξ”=12∣x1(y2βˆ’y3)+x2(y3βˆ’y1)+x3(y1βˆ’y2)∣\Delta = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|

Step 3: Simplify each term

First term:

x1(y2βˆ’y3)=5(2βˆ’2)=5(0)=0x_1(y_2 - y_3) = 5(2 - 2) = 5(0) = 0

Second term:

x2(y3βˆ’y1)=βˆ’2(2βˆ’3)=βˆ’2(βˆ’1)=2x_2(y_3 - y_1) = -2(2 - 3) = -2(-1) = 2

Third term:

x3(y1βˆ’y2)=4(3βˆ’2)=4(1)=4x_3(y_1 - y_2) = 4(3 - 2) = 4(1) = 4

Step 4: Add the terms and take the absolute value

Add the results:

0+2+4=60 + 2 + 4 = 6

Take the absolute value:

∣6∣=6|6| = 6

Step 5: Divide by 2

Divide by 2 to get the area:

Ξ”=12β‹…6=3,squareΒ units\Delta = \frac{1}{2} \cdot 6 = 3 , \text{square units}

Key Formulas or Methods Used

  • Determinant formula for the area of a triangle:
Ξ”=12∣x1(y2βˆ’y3)+x2(y3βˆ’y1)+x3(y1βˆ’y2)∣ \Delta = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
  • Simplification of algebraic expressions.

Summary of Steps

  1. Identify the vertices of the triangle and assign (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), (x3,y3)(x_3, y_3).
  2. Substitute the coordinates into the determinant formula:
Ξ”=12∣x1(y2βˆ’y3)+x2(y3βˆ’y1)+x3(y1βˆ’y2)∣ \Delta = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
  1. Simplify each term in the formula.
  2. Add the terms, take the absolute value, and divide by 2.
  3. The area of the triangle is 3,squareΒ units3 , \text{square units}.