Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.3 Q-4

Question Statement

Find the value of KK such that:

  1. The line joining points A(7,3)A(7,3) and B(K,βˆ’6)B(K,-6) is parallel to the line joining points C(βˆ’4,5)C(-4,5) and D(βˆ’6,4)D(-6,4).
  2. The line joining points A(7,3)A(7,3) and B(K,βˆ’6)B(K,-6) is perpendicular to the line joining points C(βˆ’4,5)C(-4,5) and D(βˆ’6,4)D(-6,4).

Background and Explanation

To solve this, we need to use the concept of the slope of a line. The slope of a line through two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by:

m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}
  • Parallel Lines: Two lines are parallel if their slopes are equal, i.e., m1=m2m_1 = m_2.
  • Perpendicular Lines: Two lines are perpendicular if the product of their slopes is βˆ’1-1, i.e., m1β‹…m2=βˆ’1m_1 \cdot m_2 = -1.

Solution

Step 1: Calculate the slope of line CDβ€Ύ\overline{CD}

The points C(βˆ’4,5)C(-4,5) and D(βˆ’6,4)D(-6,4) are given. Using the slope formula:

m2=y2βˆ’y1x2βˆ’x1=4βˆ’5βˆ’6βˆ’(βˆ’4)=βˆ’1βˆ’2=12m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 5}{-6 - (-4)} = \frac{-1}{-2} = \frac{1}{2}

So, the slope of CDβ€Ύ\overline{CD} is m2=12m_2 = \frac{1}{2}.

Step 2: Calculate the slope of line ABβ€Ύ\overline{AB}

The points A(7,3)A(7,3) and B(K,βˆ’6)B(K,-6) are given. The slope of ABβ€Ύ\overline{AB} is:

m1=y2βˆ’y1x2βˆ’x1=βˆ’6βˆ’3Kβˆ’7=βˆ’9Kβˆ’7m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-6 - 3}{K - 7} = \frac{-9}{K - 7}

We now have an expression for m1m_1, the slope of line ABβ€Ύ\overline{AB}, in terms of KK.

Part (i): Find KK for Parallel Lines

For the lines ABβ€Ύ\overline{AB} and CDβ€Ύ\overline{CD} to be parallel, their slopes must be equal. Therefore, we set m1=m2m_1 = m_2:

βˆ’9Kβˆ’7=12\frac{-9}{K - 7} = \frac{1}{2}

Now, solve for KK:

βˆ’9Kβˆ’7=12βˆ’9β‹…2=(Kβˆ’7)β‹…1βˆ’18=Kβˆ’7K=βˆ’18+7K=βˆ’11\begin{aligned} \frac{-9}{K - 7} &= \frac{1}{2} -9 \cdot 2 &= (K - 7) \cdot 1 -18 &= K - 7 K &= -18 + 7 K &= -11 \end{aligned}

Thus, the value of KK for the lines to be parallel is K=βˆ’11K = -11.

Part (ii): Find KK for Perpendicular Lines

For the lines ABβ€Ύ\overline{AB} and CDβ€Ύ\overline{CD} to be perpendicular, the product of their slopes must be βˆ’1-1. This gives the equation:

m1β‹…m2=βˆ’1m_1 \cdot m_2 = -1

Substitute m1=βˆ’9Kβˆ’7m_1 = \frac{-9}{K - 7} and m2=12m_2 = \frac{1}{2}:

βˆ’9Kβˆ’7β‹…12=βˆ’1\frac{-9}{K - 7} \cdot \frac{1}{2} = -1

Now, solve for KK:

βˆ’92(Kβˆ’7)=βˆ’1βˆ’9=βˆ’2(Kβˆ’7)9=2(Kβˆ’7)9=2Kβˆ’142K=9+142K=23K=232\begin{aligned} \frac{-9}{2(K - 7)} &= -1 -9 &= -2(K - 7) 9 &= 2(K - 7) 9 &= 2K - 14 2K &= 9 + 14 2K &= 23 K &= \frac{23}{2} \end{aligned}

Thus, the value of KK for the lines to be perpendicular is K=232K = \frac{23}{2}.


Key Formulas or Methods Used

  • Slope of a line through two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2):
m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}
  • For parallel lines, m1=m2m_1 = m_2.
  • For perpendicular lines, m1β‹…m2=βˆ’1m_1 \cdot m_2 = -1.

Summary of Steps

  1. Calculate the slope of line CDβ€Ύ\overline{CD} using the formula: m2=12m_2 = \frac{1}{2}.
  2. Set up the equation for the slope of line ABβ€Ύ\overline{AB}: m1=βˆ’9Kβˆ’7m_1 = \frac{-9}{K - 7}.
  3. For parallel lines: Set m1=m2m_1 = m_2 and solve for KK. The result is K=βˆ’11K = -11.
  4. For perpendicular lines: Set m1β‹…m2=βˆ’1m_1 \cdot m_2 = -1 and solve for KK. The result is K=232K = \frac{23}{2}.