Question Statement
We are asked to find the angle between two lines, β 1 \ell_1 β 1 β and β 2 \ell_2 β 2 β , in multiple cases. Specifically, the lines are defined by the following points:
(a)
Line β 1 \ell_1 β 1 β joins points ( 2 , 7 ) (2,7) ( 2 , 7 ) and ( 7 , 10 ) (7,10) ( 7 , 10 )
Line β 2 \ell_2 β 2 β joins points ( 1 , 1 ) (1,1) ( 1 , 1 ) and ( β 5 , 3 ) (-5,3) ( β 5 , 3 )
Also, for each case, we are to find the acute angle between the lines.
Background and Explanation
To find the angle between two lines, we need to use the slopes of the lines. The slope of a line through two points ( x 1 , y 1 ) (x_1, y_1) ( x 1 β , y 1 β ) and ( x 2 , y 2 ) (x_2, y_2) ( x 2 β , y 2 β ) is given by:
m = y 2 β y 1 x 2 β x 1 m = \frac{y_2 - y_1}{x_2 - x_1} m = x 2 β β x 1 β y 2 β β y 1 β β
The formula for the angle ΞΈ \theta ΞΈ between two lines with slopes m 1 m_1 m 1 β and m 2 m_2 m 2 β is:
tan β‘ ΞΈ = β£ m 1 β m 2 β£ 1 + m 1 m 2 \tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} tan ΞΈ = 1 + m 1 β m 2 β β£ m 1 β β m 2 β β£ β
Once we compute tan β‘ ΞΈ \tan \theta tan ΞΈ , we can find ΞΈ \theta ΞΈ using the inverse tangent function.
Solution
(a) Line 1 and Line 2:
We first calculate the slopes of β 1 \ell_1 β 1 β and β 2 \ell_2 β 2 β :
Slope of β 1 \ell_1 β 1 β :
Points: ( 2 , 7 ) (2,7) ( 2 , 7 ) and ( 7 , 10 ) (7,10) ( 7 , 10 )
Using the slope formula:
m 1 = 10 β 7 7 β 2 = 3 5 m_1 = \frac{10 - 7}{7 - 2} = \frac{3}{5} m 1 β = 7 β 2 10 β 7 β = 5 3 β
Slope of β 2 \ell_2 β 2 β :
Points: ( 1 , 1 ) (1,1) ( 1 , 1 ) and ( β 5 , 3 ) (-5,3) ( β 5 , 3 )
Using the slope formula:
m 2 = 3 β 1 β 5 β 1 = 2 β 6 = β 1 3 m_2 = \frac{3 - 1}{-5 - 1} = \frac{2}{-6} = -\frac{1}{3} m 2 β = β 5 β 1 3 β 1 β = β 6 2 β = β 3 1 β
Now, we can find the angle between the lines:
tan β‘ ΞΈ = β£ m 1 β m 2 β£ 1 + m 1 m 2 = β£ 3 5 + 1 3 β£ 1 + ( 3 5 ) ( β 1 3 ) \tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} = \frac{\left| \frac{3}{5} + \frac{1}{3} \right|}{1 + \left( \frac{3}{5} \right) \left( -\frac{1}{3} \right)} tan ΞΈ = 1 + m 1 β m 2 β β£ m 1 β β m 2 β β£ β = 1 + ( 5 3 β ) ( β 3 1 β ) β 5 3 β + 3 1 β β β
Simplifying the terms:
tan β‘ ΞΈ = 14 15 1 β 1 5 = 14 15 4 5 = 14 12 = 7 6 \tan \theta = \frac{\frac{14}{15}}{1 - \frac{1}{5}} = \frac{\frac{14}{15}}{\frac{4}{5}} = \frac{14}{12} = \frac{7}{6} tan ΞΈ = 1 β 5 1 β 15 14 β β = 5 4 β 15 14 β β = 12 14 β = 6 7 β
Now, to find ΞΈ \theta ΞΈ :
ΞΈ = tan β‘ β 1 ( 7 6 ) β 49. 4 β \theta = \tan^{-1} \left( \frac{7}{6} \right) \approx 49.4^\circ ΞΈ = tan β 1 ( 6 7 β ) β 49. 4 β
(b) Line 1 and Line 2:
Next, we calculate the slopes for the new set of lines:
Slope of β 1 \ell_1 β 1 β :
Points: ( 3 , β 1 ) (3, -1) ( 3 , β 1 ) and ( 5 , 7 ) (5, 7) ( 5 , 7 )
Using the slope formula:
m 1 = 7 β ( β 1 ) 5 β 3 = 8 2 = 4 m_1 = \frac{7 - (-1)}{5 - 3} = \frac{8}{2} = 4 m 1 β = 5 β 3 7 β ( β 1 ) β = 2 8 β = 4
Slope of β 2 \ell_2 β 2 β :
Points: ( 2 , 4 ) (2, 4) ( 2 , 4 ) and ( β 8 , 2 ) (-8, 2) ( β 8 , 2 )
Using the slope formula:
m 2 = 2 β 4 β 8 β 2 = β 2 β 10 = 1 5 m_2 = \frac{2 - 4}{-8 - 2} = \frac{-2}{-10} = \frac{1}{5} m 2 β = β 8 β 2 2 β 4 β = β 10 β 2 β = 5 1 β
Now, we compute the angle:
tan β‘ ΞΈ = β£ m 1 β m 2 β£ 1 + m 1 m 2 = β£ 4 β 1 5 β£ 1 + 4 β
1 5 \tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} = \frac{|4 - \frac{1}{5}|}{1 + 4 \cdot \frac{1}{5}} tan ΞΈ = 1 + m 1 β m 2 β β£ m 1 β β m 2 β β£ β = 1 + 4 β
5 1 β β£4 β 5 1 β β£ β
Simplifying the terms:
tan β‘ ΞΈ = 19 15 9 15 = 19 9 \tan \theta = \frac{\frac{19}{15}}{\frac{9}{15}} = \frac{19}{9} tan ΞΈ = 15 9 β 15 19 β β = 9 19 β
Now, to find ΞΈ \theta ΞΈ :
ΞΈ = tan β‘ β 1 ( 19 9 ) β 64.6 5 β \theta = \tan^{-1} \left( \frac{19}{9} \right) \approx 64.65^\circ ΞΈ = tan β 1 ( 9 19 β ) β 64.6 5 β
(c) Line 1 and Line 2:
For the final set of lines:
Slope of β 1 \ell_1 β 1 β :
Points: ( 1 , β 7 ) (1, -7) ( 1 , β 7 ) and ( 6 , 4 ) (6, 4) ( 6 , 4 )
Using the slope formula:
m 1 = 4 β ( β 7 ) 6 β 1 = 11 5 = 3 5 m_1 = \frac{4 - (-7)}{6 - 1} = \frac{11}{5} = \frac{3}{5} m 1 β = 6 β 1 4 β ( β 7 ) β = 5 11 β = 5 3 β
Slope of β 2 \ell_2 β 2 β :
Points: ( β 1 , 2 ) (-1, 2) ( β 1 , 2 ) and ( β 6 , β 1 ) (-6, -1) ( β 6 , β 1 )
Using the slope formula:
m 2 = β 1 β 2 β 6 β ( β 1 ) = β 3 β 5 = 3 5 m_2 = \frac{-1 - 2}{-6 - (-1)} = \frac{-3}{-5} = \frac{3}{5} m 2 β = β 6 β ( β 1 ) β 1 β 2 β = β 5 β 3 β = 5 3 β
Here, we see that both slopes are equal, meaning the lines are parallel and there is no acute angle . Thus, the angle is:
ΞΈ = tan β‘ β 1 ( 0 ) = 0 β \theta = \tan^{-1} (0) = 0^\circ ΞΈ = tan β 1 ( 0 ) = 0 β
(d) Line 1 and Line 2:
Slope of β 1 \ell_1 β 1 β :
Points: ( β 9 , β 1 ) (-9, -1) ( β 9 , β 1 ) and ( 3 , β 5 ) (3, -5) ( 3 , β 5 )
Using the slope formula:
m 1 = β 5 β ( β 1 ) 3 β ( β 9 ) = β 4 12 = β 1 3 m_1 = \frac{-5 - (-1)}{3 - (-9)} = \frac{-4}{12} = -\frac{1}{3} m 1 β = 3 β ( β 9 ) β 5 β ( β 1 ) β = 12 β 4 β = β 3 1 β
Slope of β 2 \ell_2 β 2 β :
Points: ( 2 , 7 ) (2, 7) ( 2 , 7 ) and ( β 6 , β 7 ) (-6, -7) ( β 6 , β 7 )
Using the slope formula:
m 2 = β 7 β 7 β 6 β 2 = β 14 β 8 = 7 4 m_2 = \frac{-7 - 7}{-6 - 2} = \frac{-14}{-8} = \frac{7}{4} m 2 β = β 6 β 2 β 7 β 7 β = β 8 β 14 β = 4 7 β
Now, we calculate the angle:
tan β‘ ΞΈ = β£ m 1 β m 2 β£ 1 + m 1 m 2 = β£ β 1 3 β 7 4 β£ 1 + ( β 1 3 ) ( 7 4 ) \tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} = \frac{\left| -\frac{1}{3} - \frac{7}{4} \right|}{1 + \left( -\frac{1}{3} \right) \left( \frac{7}{4} \right)} tan ΞΈ = 1 + m 1 β m 2 β β£ m 1 β β m 2 β β£ β = 1 + ( β 3 1 β ) ( 4 7 β ) β β 3 1 β β 4 7 β β β
Simplifying the terms:
tan β‘ ΞΈ = 25 12 5 12 = 5 \tan \theta = \frac{\frac{25}{12}}{\frac{5}{12}} = 5 tan ΞΈ = 12 5 β 12 25 β β = 5
Now, to find ΞΈ \theta ΞΈ :
ΞΈ = tan β‘ β 1 ( 5 ) β 78.6 9 β \theta = \tan^{-1} (5) \approx 78.69^\circ ΞΈ = tan β 1 ( 5 ) β 78.6 9 β
Slope Formula :
m = y 2 β y 1 x 2 β x 1 m = \frac{y_2 - y_1}{x_2 - x_1} m = x 2 β β x 1 β y 2 β β y 1 β β
Angle Between Two Lines Formula :
tan β‘ ΞΈ = β£ m 1 β m 2 β£ 1 + m 1 m 2 \tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} tan ΞΈ = 1 + m 1 β m 2 β β£ m 1 β β m 2 β β£ β
Summary of Steps
Calculate the slopes of both lines.
Apply the angle formula to find tan β‘ ΞΈ \tan \theta tan ΞΈ .
Find ΞΈ \theta ΞΈ using the inverse tangent function.