Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.4 Q-10

Question Statement

We are asked to find the angle between two lines, β„“1\ell_1 and β„“2\ell_2, in multiple cases. Specifically, the lines are defined by the following points:

(a)

  • Line β„“1\ell_1 joins points (2,7)(2,7) and (7,10)(7,10)
  • Line β„“2\ell_2 joins points (1,1)(1,1) and (βˆ’5,3)(-5,3)

Also, for each case, we are to find the acute angle between the lines.


Background and Explanation

To find the angle between two lines, we need to use the slopes of the lines. The slope of a line through two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by:

m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}

The formula for the angle ΞΈ\theta between two lines with slopes m1m_1 and m2m_2 is:

tan⁑θ=∣m1βˆ’m2∣1+m1m2\tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2}

Once we compute tan⁑θ\tan \theta, we can find θ\theta using the inverse tangent function.


Solution

(a) Line 1 and Line 2:

We first calculate the slopes of β„“1\ell_1 and β„“2\ell_2:

  1. Slope of β„“1\ell_1:
    • Points: (2,7)(2,7) and (7,10)(7,10)
    • Using the slope formula:
m1=10βˆ’77βˆ’2=35 m_1 = \frac{10 - 7}{7 - 2} = \frac{3}{5}
  1. Slope of β„“2\ell_2:
    • Points: (1,1)(1,1) and (βˆ’5,3)(-5,3)
    • Using the slope formula:
m2=3βˆ’1βˆ’5βˆ’1=2βˆ’6=βˆ’13 m_2 = \frac{3 - 1}{-5 - 1} = \frac{2}{-6} = -\frac{1}{3}

Now, we can find the angle between the lines:

tan⁑θ=∣m1βˆ’m2∣1+m1m2=∣35+13∣1+(35)(βˆ’13)\tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} = \frac{\left| \frac{3}{5} + \frac{1}{3} \right|}{1 + \left( \frac{3}{5} \right) \left( -\frac{1}{3} \right)}

Simplifying the terms:

tan⁑θ=14151βˆ’15=141545=1412=76\tan \theta = \frac{\frac{14}{15}}{1 - \frac{1}{5}} = \frac{\frac{14}{15}}{\frac{4}{5}} = \frac{14}{12} = \frac{7}{6}

Now, to find ΞΈ\theta:

ΞΈ=tanβ‘βˆ’1(76)β‰ˆ49.4∘\theta = \tan^{-1} \left( \frac{7}{6} \right) \approx 49.4^\circ

(b) Line 1 and Line 2:

Next, we calculate the slopes for the new set of lines:

  1. Slope of β„“1\ell_1:
    • Points: (3,βˆ’1)(3, -1) and (5,7)(5, 7)
    • Using the slope formula:
m1=7βˆ’(βˆ’1)5βˆ’3=82=4 m_1 = \frac{7 - (-1)}{5 - 3} = \frac{8}{2} = 4
  1. Slope of β„“2\ell_2:
    • Points: (2,4)(2, 4) and (βˆ’8,2)(-8, 2)
    • Using the slope formula:
m2=2βˆ’4βˆ’8βˆ’2=βˆ’2βˆ’10=15 m_2 = \frac{2 - 4}{-8 - 2} = \frac{-2}{-10} = \frac{1}{5}

Now, we compute the angle:

tan⁑θ=∣m1βˆ’m2∣1+m1m2=∣4βˆ’15∣1+4β‹…15\tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} = \frac{|4 - \frac{1}{5}|}{1 + 4 \cdot \frac{1}{5}}

Simplifying the terms:

tan⁑θ=1915915=199\tan \theta = \frac{\frac{19}{15}}{\frac{9}{15}} = \frac{19}{9}

Now, to find ΞΈ\theta:

ΞΈ=tanβ‘βˆ’1(199)β‰ˆ64.65∘\theta = \tan^{-1} \left( \frac{19}{9} \right) \approx 64.65^\circ

(c) Line 1 and Line 2:

For the final set of lines:

  1. Slope of β„“1\ell_1:
    • Points: (1,βˆ’7)(1, -7) and (6,4)(6, 4)
    • Using the slope formula:
m1=4βˆ’(βˆ’7)6βˆ’1=115=35 m_1 = \frac{4 - (-7)}{6 - 1} = \frac{11}{5} = \frac{3}{5}
  1. Slope of β„“2\ell_2:
    • Points: (βˆ’1,2)(-1, 2) and (βˆ’6,βˆ’1)(-6, -1)
    • Using the slope formula:
m2=βˆ’1βˆ’2βˆ’6βˆ’(βˆ’1)=βˆ’3βˆ’5=35 m_2 = \frac{-1 - 2}{-6 - (-1)} = \frac{-3}{-5} = \frac{3}{5}

Here, we see that both slopes are equal, meaning the lines are parallel and there is no acute angle. Thus, the angle is:

ΞΈ=tanβ‘βˆ’1(0)=0∘\theta = \tan^{-1} (0) = 0^\circ

(d) Line 1 and Line 2:

  1. Slope of β„“1\ell_1:
    • Points: (βˆ’9,βˆ’1)(-9, -1) and (3,βˆ’5)(3, -5)
    • Using the slope formula:
m1=βˆ’5βˆ’(βˆ’1)3βˆ’(βˆ’9)=βˆ’412=βˆ’13 m_1 = \frac{-5 - (-1)}{3 - (-9)} = \frac{-4}{12} = -\frac{1}{3}
  1. Slope of β„“2\ell_2:
    • Points: (2,7)(2, 7) and (βˆ’6,βˆ’7)(-6, -7)
    • Using the slope formula:
m2=βˆ’7βˆ’7βˆ’6βˆ’2=βˆ’14βˆ’8=74 m_2 = \frac{-7 - 7}{-6 - 2} = \frac{-14}{-8} = \frac{7}{4}

Now, we calculate the angle:

tan⁑θ=∣m1βˆ’m2∣1+m1m2=βˆ£βˆ’13βˆ’74∣1+(βˆ’13)(74)\tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} = \frac{\left| -\frac{1}{3} - \frac{7}{4} \right|}{1 + \left( -\frac{1}{3} \right) \left( \frac{7}{4} \right)}

Simplifying the terms:

tan⁑θ=2512512=5\tan \theta = \frac{\frac{25}{12}}{\frac{5}{12}} = 5

Now, to find ΞΈ\theta:

ΞΈ=tanβ‘βˆ’1(5)β‰ˆ78.69∘\theta = \tan^{-1} (5) \approx 78.69^\circ

Key Formulas or Methods Used

  • Slope Formula:
    m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}

  • Angle Between Two Lines Formula:
    tan⁑θ=∣m1βˆ’m2∣1+m1m2\tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2}


Summary of Steps

  1. Calculate the slopes of both lines.
  2. Apply the angle formula to find tan⁑θ\tan \theta.
  3. Find ΞΈ\theta using the inverse tangent function.