Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.4 Q-11

Question Statement

Find the interior angles of the triangle whose vertices are:

  • A(-2, 11)
  • B(-6, -3)
  • C(4, -9)

Background and Explanation

To find the interior angles of a triangle from its vertices, we need to:

  1. Calculate the slopes of the sides using the formula for the slope between two points.
  2. Use the formula for the tangent of the angle between two lines to compute the angles at each vertex.

The slope of a line joining two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by:
m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}

To find the angle between two lines with slopes m1m_1 and m2m_2, we use the tangent formula: tan⁑(ΞΈ)=∣m1βˆ’m21+m1m2∣\tan(\theta) = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right|


Solution

Step 1: Find the Slopes

The slopes of the sides are calculated as follows:

  • Slope of AB: m1=βˆ’3βˆ’11βˆ’6βˆ’(βˆ’2)=βˆ’14βˆ’4=72m_1 = \frac{-3 - 11}{-6 - (-2)} = \frac{-14}{-4} = \frac{7}{2}

  • Slope of BC: m2=βˆ’9βˆ’(βˆ’3)4βˆ’(βˆ’6)=βˆ’610=βˆ’35m_2 = \frac{-9 - (-3)}{4 - (-6)} = \frac{-6}{10} = -\frac{3}{5}

  • Slope of AC: m3=βˆ’9βˆ’114βˆ’(βˆ’2)=βˆ’206=βˆ’103m_3 = \frac{-9 - 11}{4 - (-2)} = \frac{-20}{6} = -\frac{10}{3}

Step 2: Calculate the Angles

Now we calculate the angles using the formula for the tangent of the angle between two lines.

Angle at vertex A:

The angle at vertex A is between the lines AB and AC: tan⁑(∠A)=∣m1βˆ’m31+m1m3∣=∣72βˆ’(βˆ’103)1+72β‹…(βˆ’103)∣\tan(\angle A) = \left| \frac{m_1 - m_3}{1 + m_1 m_3} \right| = \left| \frac{\frac{7}{2} - \left(-\frac{10}{3}\right)}{1 + \frac{7}{2} \cdot \left(-\frac{10}{3}\right)} \right|

Simplifying: tan⁑(∠A)=103+721βˆ’356=41616=4164\tan(\angle A) = \frac{\frac{10}{3} + \frac{7}{2}}{1 - \frac{35}{6}} = \frac{\frac{41}{6}}{\frac{1}{6}} = \frac{41}{64}

Now, calculate the inverse tangent: ∠A=tanβ‘βˆ’1(4164)β‰ˆ32.64∘\angle A = \tan^{-1}\left(\frac{41}{64}\right) \approx 32.64^\circ

Angle at vertex B:

The angle at vertex B is between the lines AB and BC: tan⁑(∠B)=∣m1βˆ’m21+m1m2∣=∣72βˆ’(βˆ’35)1+72β‹…(βˆ’35)∣\tan(\angle B) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{7}{2} - \left(-\frac{3}{5}\right)}{1 + \frac{7}{2} \cdot \left(-\frac{3}{5}\right)} \right|

Simplifying: tan⁑(∠B)=72+351βˆ’2110=3510+610βˆ’1110=4111\tan(\angle B) = \frac{\frac{7}{2} + \frac{3}{5}}{1 - \frac{21}{10}} = \frac{\frac{35}{10} + \frac{6}{10}}{-\frac{11}{10}} = \frac{41}{11}

Now, calculate the inverse tangent: ∠B=tanβ‘βˆ’1(4111)β‰ˆ105.02∘\angle B = \tan^{-1}\left(\frac{41}{11}\right) \approx 105.02^\circ

Angle at vertex C:

The angle at vertex C is between the lines BC and AC: tan⁑(∠C)=∣m2βˆ’m31+m2m3∣=βˆ£βˆ’35βˆ’(βˆ’103)1+(βˆ’35)β‹…(βˆ’103)∣\tan(\angle C) = \left| \frac{m_2 - m_3}{1 + m_2 m_3} \right| = \left| \frac{-\frac{3}{5} - \left(-\frac{10}{3}\right)}{1 + \left(-\frac{3}{5}\right) \cdot \left(-\frac{10}{3}\right)} \right|

Simplifying: tan⁑(∠C)=βˆ’915+50151+3015=41154515=4125\tan(\angle C) = \frac{\frac{-9}{15} + \frac{50}{15}}{1 + \frac{30}{15}} = \frac{\frac{41}{15}}{\frac{45}{15}} = \frac{41}{25}

Now, calculate the inverse tangent: ∠C=tanβ‘βˆ’1(4125)β‰ˆ42.34∘\angle C = \tan^{-1}\left(\frac{41}{25}\right) \approx 42.34^\circ


Key Formulas or Methods Used

  1. Slope Formula: m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}

  2. Tangent Formula for Angle Between Two Lines: tan⁑(ΞΈ)=∣m1βˆ’m21+m1m2∣\tan(\theta) = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right|


Summary of Steps

  1. Calculate the slopes of the sides of the triangle:

    • m1m_1 (AB), m2m_2 (BC), m3m_3 (AC).
  2. Use the tangent formula to calculate the angles:

    • Angle at A: tan⁑(∠A)=4164β‡’βˆ Aβ‰ˆ32.64∘\tan(\angle A) = \frac{41}{64} \quad \Rightarrow \quad \angle A \approx 32.64^\circ
    • Angle at B: tan⁑(∠B)=4111β‡’βˆ Bβ‰ˆ105.02∘\tan(\angle B) = \frac{41}{11} \quad \Rightarrow \quad \angle B \approx 105.02^\circ
    • Angle at C: tan⁑(∠C)=4125β‡’βˆ Cβ‰ˆ42.34∘\tan(\angle C) = \frac{41}{25} \quad \Rightarrow \quad \angle C \approx 42.34^\circ
  3. Final Angles of the triangle:

    • ∠Aβ‰ˆ32.64∘\angle A \approx 32.64^\circ
    • ∠Bβ‰ˆ105.02∘\angle B \approx 105.02^\circ
    • ∠Cβ‰ˆ42.34∘\angle C \approx 42.34^\circ