Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.5 Q-4

Question Statement

Solve the equation 2x2+3xyβˆ’5y2=02x^2 + 3xy - 5y^2 = 0 to find the lines it represents, and determine the angle between these lines.


Background and Explanation

This problem deals with a second-degree equation representing two straight lines. To solve:

  1. Convert the equation into a standard form involving yx\frac{y}{x} (or xy\frac{x}{y}) to find the slopes of the lines.
  2. Use the slopes to determine the angle between the lines.

Solution

Step 1: Rewrite the equation

The given equation is:

2x2+3xyβˆ’5y2=02x^2 + 3xy - 5y^2 = 0

Divide through by x2x^2 (assuming x≠0x \neq 0):

5(yx)2βˆ’3(yx)βˆ’2=05\left(\frac{y}{x}\right)^2 - 3\left(\frac{y}{x}\right) - 2 = 0

Let yx=m\frac{y}{x} = m, giving:

5m2βˆ’3mβˆ’2=05m^2 - 3m - 2 = 0

Step 2: Solve for mm

Solve the quadratic equation for mm using the quadratic formula:

m=βˆ’(βˆ’3)Β±(βˆ’3)2βˆ’4(5)(βˆ’2)2(5)m = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(5)(-2)}}{2(5)}

Simplify step by step:

  1. Compute the discriminant:
(βˆ’3)2βˆ’4(5)(βˆ’2)=9+40=49 (-3)^2 - 4(5)(-2) = 9 + 40 = 49
  1. Apply the quadratic formula:
m=3Β±4910 m = \frac{3 \pm \sqrt{49}}{10} m=3Β±710 m = \frac{3 \pm 7}{10}

Split into two solutions:

m=3βˆ’710=βˆ’410=βˆ’25,m=3+710=1 m = \frac{3 - 7}{10} = -\frac{4}{10} = -\frac{2}{5}, \quad m = \frac{3 + 7}{10} = 1

Step 3: Find the equations of the lines

The slopes of the lines are m1=βˆ’25m_1 = -\frac{2}{5} and m2=1m_2 = 1. Using the slope-intercept form y=mxy = mx, rewrite the lines:

  1. For m1=βˆ’25m_1 = -\frac{2}{5}:
y=βˆ’25xβ‡’2x+5y=0 y = -\frac{2}{5}x \quad \Rightarrow \quad 2x + 5y = 0
  1. For m2=1m_2 = 1:
y=xβ‡’xβˆ’y=0 y = x \quad \Rightarrow \quad x - y = 0

The equations of the lines are:

2x+5y=0andxβˆ’y=02x + 5y = 0 \quad \text{and} \quad x - y = 0

Step 4: Find the angle between the lines

The angle ΞΈ\theta between two lines with slopes m1m_1 and m2m_2 is given by:

tan⁑θ=∣m2βˆ’m11+m1β‹…m2∣\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right|

Substitute m1=βˆ’25m_1 = -\frac{2}{5} and m2=1m_2 = 1:

tan⁑θ=∣1βˆ’(βˆ’25)1+(1β‹…βˆ’25)∣\tan \theta = \left| \frac{1 - \left(-\frac{2}{5}\right)}{1 + \left(1 \cdot -\frac{2}{5}\right)} \right|

Simplify:

  1. Numerator:
1βˆ’(βˆ’25)=1+25=55+25=75 1 - \left(-\frac{2}{5}\right) = 1 + \frac{2}{5} = \frac{5}{5} + \frac{2}{5} = \frac{7}{5}
  1. Denominator:
1+(βˆ’25)=1βˆ’25=55βˆ’25=35 1 + \left(-\frac{2}{5}\right) = 1 - \frac{2}{5} = \frac{5}{5} - \frac{2}{5} = \frac{3}{5}
  1. Division:
tan⁑θ=7535=73 \tan \theta = \frac{\frac{7}{5}}{\frac{3}{5}} = \frac{7}{3}

Finally, find the angle:

ΞΈ=tanβ‘βˆ’1(73)β‰ˆ66.8∘\theta = \tan^{-1}\left(\frac{7}{3}\right) \approx 66.8^\circ

Key Formulas or Methods Used

  1. Quadratic Formula:
m=βˆ’bΒ±b2βˆ’4ac2a m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  1. Angle Between Lines:
tan⁑θ=∣m2βˆ’m11+m1β‹…m2∣ \tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right|

Summary of Steps

  1. Rewrite the given equation as a quadratic in yx\frac{y}{x}.
  2. Solve for yx\frac{y}{x} to find the slopes m1=βˆ’25m_1 = -\frac{2}{5} and m2=1m_2 = 1.
  3. Derive the equations of the lines as 2x+5y=02x + 5y = 0 and xβˆ’y=0x - y = 0.
  4. Use the formula for the angle between lines to find ΞΈβ‰ˆ66.8∘\theta \approx 66.8^\circ.