Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

4.5 Q-6

Question Statement

Solve the given quadratic equation and find the acute angle between the lines represented by it:

x2+2xysec⁑x+y2=0x^2 + 2xy \sec x + y^2 = 0

Background and Explanation

This is a quadratic equation in terms of xx and yy, which can be rewritten as a quadratic in yx\frac{y}{x}. Understanding the quadratic form and the relationship between slopes of lines and angles is essential. Additionally, trigonometric identities like sec⁑=1cos⁑\sec = \frac{1}{\cos} and tan⁑=sin⁑cos⁑\tan = \frac{\sin}{\cos} will be used.


Solution

Step 1: Rewrite the equation

Divide through by x2x^2 to simplify:

y2x2+2xysec⁑xx2+x2x2=0\frac{y^2}{x^2} + \frac{2xy \sec x}{x^2} + \frac{x^2}{x^2} = 0

Simplify each term:

(yx)2+2sec⁑(yx)+1=0\left(\frac{y}{x}\right)^2 + 2 \sec \left(\frac{y}{x}\right) + 1 = 0

Let yx=m\frac{y}{x} = m. The equation becomes:

m2+2msec⁑+1=0m^2 + 2m \sec + 1 = 0

Step 2: Solve the quadratic equation

Using the quadratic formula:

m=βˆ’2sec⁑±(2sec⁑)2βˆ’4(1)(1)2(1)m = \frac{-2\sec \pm \sqrt{(2\sec)^2 - 4(1)(1)}}{2(1)}

Substitute and simplify:

m=βˆ’2sec⁑±4sec⁑2βˆ’42m = \frac{-2\sec \pm \sqrt{4\sec^2 - 4}}{2} m=βˆ’2sec⁑±2sec⁑2βˆ’12m = \frac{-2\sec \pm 2\sqrt{\sec^2 - 1}}{2}

Since sec⁑2βˆ’1=tan⁑2\sec^2 - 1 = \tan^2, this reduces to:

m=sec⁑±tan⁑m = \sec \pm \tan

Step 3: Interpret the slopes

Slopes of the lines are:

m1=sec⁑+tan⁑,m2=secβ‘βˆ’tan⁑m_1 = \sec + \tan, \quad m_2 = \sec - \tan

Step 4: Find the angle between the lines

The formula for the angle ΞΈ\theta between two lines with slopes m1m_1 and m2m_2 is:

tan⁑θ=∣m2βˆ’m11+m1β‹…m2∣\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right|

Substitute m1=sec⁑+tan⁑m_1 = \sec + \tan and m2=secβ‘βˆ’tan⁑m_2 = \sec - \tan:

tan⁑θ=∣(secβ‘βˆ’tan⁑)βˆ’(sec⁑+tan⁑)1+(sec⁑+tan⁑)(secβ‘βˆ’tan⁑)∣\tan \theta = \left| \frac{(\sec - \tan) - (\sec + \tan)}{1 + (\sec + \tan)(\sec - \tan)} \right|

Simplify the numerator:

tan⁑θ=βˆ£βˆ’2tan⁑1+(sec⁑2βˆ’tan⁑2)∣\tan \theta = \left| \frac{-2\tan}{1 + (\sec^2 - \tan^2)} \right|

Using sec⁑2βˆ’tan⁑2=1\sec^2 - \tan^2 = 1:

tan⁑θ=βˆ£βˆ’2tan⁑1+1∣\tan \theta = \left| \frac{-2\tan}{1 + 1} \right| tan⁑θ=βˆ£βˆ’tan⁑1∣=tan⁑\tan \theta = \left| -\frac{\tan}{1} \right| = \tan

Thus, the acute angle ΞΈ\theta is:

ΞΈ=tanβ‘βˆ’1(tan⁑)\theta = \tan^{-1}(\tan)

Key Formulas or Methods Used

  1. Quadratic Formula: m=βˆ’bΒ±b2βˆ’4ac2am = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  2. Relationship Between Slopes: tan⁑θ=∣m2βˆ’m11+m1β‹…m2∣\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right|
  3. Trigonometric Identities:
    • sec⁑=1cos⁑\sec = \frac{1}{\cos}
    • tan⁑2=sec⁑2βˆ’1\tan^2 = \sec^2 - 1

Summary of Steps

  1. Rewrite the equation in terms of yx\frac{y}{x}.
  2. Solve the quadratic equation to find m1m_1 and m2m_2.
  3. Use the formula for the angle between two lines to calculate tan⁑θ\tan \theta.
  4. Simplify using trigonometric identities to find the final acute angle.