Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.2 Q-1

Question Statement

The problem asks to write down the equations of the tangent and normal lines to two different circles at specific points:

  1. For the circle x2+y2=25x^2 + y^2 = 25, find the equations of the tangent and normal at:

    • (4,3)(4, 3)
    • (5cos⁑θ,5sin⁑θ)(5 \cos \theta, 5 \sin \theta)
  2. For the ellipse 3x2+2y2+5xβˆ’13y+2=03x^2 + 2y^2 + 5x - 13y + 2 = 0, find the equations of the tangent and normal at the point (1,103)\left( 1, \frac{10}{3} \right).


Background and Explanation

Before solving this, let’s review some key concepts:

  • Equation of a Tangent to a Circle: The equation of the tangent at a point on the circle can be found using the derivative of the circle’s equation, or by using the point-slope form of the line.

  • Slope of Tangent Line: For a circle given by x2+y2=r2x^2 + y^2 = r^2, the slope of the tangent line at a point (x1,y1)(x_1, y_1) is given by:

m=βˆ’x1y1 m = -\frac{x_1}{y_1}
  • Equation of Normal Line: The normal to the circle is perpendicular to the tangent. The slope of the normal line is the negative reciprocal of the tangent’s slope.

Solution

i. Circle x2+y2=25x^2 + y^2 = 25

Step 1: Find the slope of the tangent at (4,3)(4, 3)
The equation of the circle is x2+y2=25x^2 + y^2 = 25. To find the slope of the tangent at (x1,y1)(x_1, y_1), we differentiate implicitly:

2x+2ydydx=02x + 2y \frac{dy}{dx} = 0

Solving for dydx\frac{dy}{dx} (the slope of the tangent):

dydx=βˆ’xy\frac{dy}{dx} = -\frac{x}{y}

At the point (4,3)(4, 3):

dydx=βˆ’43\frac{dy}{dx} = -\frac{4}{3}

Thus, the slope of the tangent at (4,3)(4, 3) is βˆ’43-\frac{4}{3}.

Step 2: Find the equation of the tangent at (4,3)(4, 3)
Using the point-slope form of the line yβˆ’y1=m(xβˆ’x1)y - y_1 = m(x - x_1), where mm is the slope:

yβˆ’3=βˆ’43(xβˆ’4)y - 3 = -\frac{4}{3}(x - 4)

Simplifying:

3yβˆ’9=βˆ’4x+16β‡’4x+3yβˆ’25=03y - 9 = -4x + 16 \quad \Rightarrow \quad 4x + 3y - 25 = 0

Thus, the equation of the tangent at (4,3)(4, 3) is 4x+3yβˆ’25=04x + 3y - 25 = 0.

Step 3: Find the equation of the normal at (4,3)(4, 3)
The slope of the normal is the negative reciprocal of the slope of the tangent:

mnormal=34m_{\text{normal}} = \frac{3}{4}

Using the point-slope form again:

yβˆ’3=34(xβˆ’4)y - 3 = \frac{3}{4}(x - 4)

Simplifying:

4yβˆ’12=3xβˆ’12β‡’3xβˆ’4y=04y - 12 = 3x - 12 \quad \Rightarrow \quad 3x - 4y = 0

Thus, the equation of the normal at (4,3)(4, 3) is 3xβˆ’4y=03x - 4y = 0.

Step 4: Equation of the tangent at (5cos⁑θ,5sin⁑θ)(5 \cos \theta, 5 \sin \theta)
Using the slope formula for the tangent at any point on the circle x2+y2=25x^2 + y^2 = 25:

dydx=βˆ’xy=βˆ’5cos⁑θ5sin⁑θ=βˆ’cos⁑θsin⁑θ\frac{dy}{dx} = -\frac{x}{y} = -\frac{5 \cos \theta}{5 \sin \theta} = -\frac{\cos \theta}{\sin \theta}

So, the slope of the tangent at (5cos⁑θ,5sin⁑θ)(5 \cos \theta, 5 \sin \theta) is βˆ’cos⁑θsin⁑θ-\frac{\cos \theta}{\sin \theta}.

Using the point-slope form of the tangent:

yβˆ’5sin⁑θ=cos⁑θsin⁑θ(xβˆ’5cos⁑θ)y - 5 \sin \theta = \frac{\cos \theta}{\sin \theta}(x - 5 \cos \theta)

Simplifying:

ysinβ‘ΞΈβˆ’5sin⁑2ΞΈ=βˆ’xcos⁑θ+5cos⁑2ΞΈy \sin \theta - 5 \sin^2 \theta = -x \cos \theta + 5 \cos^2 \theta xcos⁑θ+ysin⁑θ=5(sin⁑2ΞΈ+cos⁑2ΞΈ)=5x \cos \theta + y \sin \theta = 5 (\sin^2 \theta + \cos^2 \theta) = 5

Thus, the equation of the tangent is:

xcos⁑θ+ysinβ‘ΞΈβˆ’5=0x \cos \theta + y \sin \theta - 5 = 0

Step 5: Equation of the normal at (5cos⁑θ,5sin⁑θ)(5 \cos \theta, 5 \sin \theta)
The slope of the normal is the negative reciprocal of the slope of the tangent:

sin⁑θcos⁑θ\frac{\sin \theta}{\cos \theta}

Using the point-slope form of the normal:

yβˆ’5sin⁑θ=sin⁑θcos⁑θ(xβˆ’5cos⁑θ)y - 5 \sin \theta = \frac{\sin \theta}{\cos \theta}(x - 5 \cos \theta)

Simplifying:

ycosβ‘ΞΈβˆ’5sin⁑θcos⁑θ=xsinβ‘ΞΈβˆ’5sin⁑θcos⁑θy \cos \theta - 5 \sin \theta \cos \theta = x \sin \theta - 5 \sin \theta \cos \theta xsinβ‘ΞΈβˆ’ycos⁑θ=0x \sin \theta - y \cos \theta = 0

Thus, the equation of the normal is:

xsinβ‘ΞΈβˆ’ycos⁑θ=0x \sin \theta - y \cos \theta = 0

ii. Ellipse 3x2+2y2+5xβˆ’13y+2=03x^2 + 2y^2 + 5x - 13y + 2 = 0

Step 1: Differentiate implicitly to find the slope of the tangent
Differentiating the equation of the ellipse:

6x+6ydydx+5βˆ’13dydx=06x + 6y \frac{dy}{dx} + 5 - 13 \frac{dy}{dx} = 0

Solving for dydx\frac{dy}{dx}:

dydx(6yβˆ’13)=βˆ’6xβˆ’5\frac{dy}{dx} (6y - 13) = -6x - 5 dydx=6x+56yβˆ’13\frac{dy}{dx} = \frac{6x + 5}{6y - 13}

Step 2: Calculate the slope at (1,103)\left(1, \frac{10}{3}\right)
Substitute x=1x = 1 and y=103y = \frac{10}{3} into the derivative:

dydx=6(1)+56(103)βˆ’13=117\frac{dy}{dx} = \frac{6(1) + 5}{6\left(\frac{10}{3}\right) - 13} = \frac{11}{7}

Thus, the slope of the tangent at (1,103)\left(1, \frac{10}{3}\right) is 117\frac{11}{7}.

Step 3: Equation of the tangent at (1,103)\left(1, \frac{10}{3}\right)
Using the point-slope form of the tangent:

yβˆ’103=βˆ’117(xβˆ’1)y - \frac{10}{3} = -\frac{11}{7}(x - 1)

Simplifying:

7yβˆ’70=βˆ’11x+117y - 70 = -11x + 11 11x+7yβˆ’1033=011x + 7y - \frac{103}{3} = 0

Multiplying through by 3:

33x+21yβˆ’103=033x + 21y - 103 = 0

Thus, the equation of the tangent is 33x+21yβˆ’103=033x + 21y - 103 = 0.

Step 4: Equation of the normal at (1,103)\left(1, \frac{10}{3}\right)
The slope of the normal is the negative reciprocal of the slope of the tangent:

711\frac{7}{11}

Using the point-slope form of the normal:

yβˆ’103=711(xβˆ’1)y - \frac{10}{3} = \frac{7}{11}(x - 1)

Simplifying:

11yβˆ’110=7xβˆ’711y - 110 = 7x - 7 7xβˆ’11y+893=07x - 11y + \frac{89}{3} = 0

Multiplying through by 3:

21xβˆ’33y+89=021x - 33y + 89 = 0

Thus, the equation of the normal is 21xβˆ’33y+89=021x - 33y + 89 = 0.


Key Formulas or Methods Used

  • Point-slope form of the line: yβˆ’y1=m(xβˆ’x1)y - y_1 = m(x - x_1)
  • Implicit differentiation: Used to find the slope of the tangent for both the circle and ellipse.
  • Negative reciprocal: The slope of the normal line is the negative reciprocal of the tangent line’s slope.

Summary of Steps

  1. Differentiate the equation of the circle or ellipse to find the slope of the tangent.
  2. Use the point-slope form to write the equation of the tangent.
  3. Find the slope of the normal (negative reciprocal of the tangent’s slope).
  4. Use the point-slope form again to find the equation of the normal.
  5. Simplify the equations to the standard form.