Question Statement
Find the length of the tangent drawn from the point ( − 5 , 4 ) (-5,4) ( − 5 , 4 ) to the circle given by the equation:
5 x 2 + 5 y 2 − 10 x + 15 y − 131 = 0 5x^2 + 5y^2 - 10x + 15y - 131 = 0 5 x 2 + 5 y 2 − 10 x + 15 y − 131 = 0
Background and Explanation
To solve this problem, we need to recall the formula for the length of a tangent drawn from a point ( x 1 , y 1 ) (x_1, y_1) ( x 1 ​ , y 1 ​ ) to a circle. The general equation of a circle is:
x 2 + y 2 + 2 g x + 2 f y + c = 0 x^2 + y^2 + 2gx + 2fy + c = 0 x 2 + y 2 + 2 gx + 2 f y + c = 0
The length of the tangent from a point ( x 1 , y 1 ) (x_1, y_1) ( x 1 ​ , y 1 ​ ) to the circle is given by the formula:
Length of Tangent = x 1 2 + y 1 2 − 2 g x 1 − 2 f y 1 + c \text{Length of Tangent} = \sqrt{x_1^2 + y_1^2 - 2gx_1 - 2fy_1 + c} Length of Tangent = x 1 2 ​ + y 1 2 ​ − 2 g x 1 ​ − 2 f y 1 ​ + c ​
Where:
g g g , f f f , and c c c are the coefficients from the standard form of the circle equation.
( x 1 , y 1 ) (x_1, y_1) ( x 1 ​ , y 1 ​ ) is the point outside the circle.
Solution
We begin by simplifying the given equation of the circle:
5 x 2 + 5 y 2 − 10 x + 15 y − 131 = 0 5x^2 + 5y^2 - 10x + 15y - 131 = 0 5 x 2 + 5 y 2 − 10 x + 15 y − 131 = 0
Divide through by 5 to simplify:
x 2 + y 2 − 2 x + 3 y − 131 5 = 0 x^2 + y^2 - 2x + 3y - \frac{131}{5} = 0 x 2 + y 2 − 2 x + 3 y − 5 131 ​ = 0
From this, we identify the coefficients:
g = − 1 g = -1 g = − 1
f = 3 2 f = \frac{3}{2} f = 2 3 ​
c = − 131 5 c = -\frac{131}{5} c = − 5 131 ​
Now, using the formula for the length of the tangent:
Length of Tangent = ( − 5 ) 2 + 4 2 − 2 ( − 5 ) + 3 ( 4 ) − 131 5 \text{Length of Tangent} = \sqrt{(-5)^2 + 4^2 - 2(-5) + 3(4) - \frac{131}{5}} Length of Tangent = ( − 5 ) 2 + 4 2 − 2 ( − 5 ) + 3 ( 4 ) − 5 131 ​ ​
We break this into parts:
( − 5 ) 2 = 25 (-5)^2 = 25 ( − 5 ) 2 = 25
4 2 = 16 4^2 = 16 4 2 = 16
− 2 ( − 5 ) = 10 -2(-5) = 10 − 2 ( − 5 ) = 10
3 ( 4 ) = 12 3(4) = 12 3 ( 4 ) = 12
Substituting these values back into the equation:
Length of Tangent = 25 + 16 + 10 + 12 − 131 5 \text{Length of Tangent} = \sqrt{25 + 16 + 10 + 12 - \frac{131}{5}} Length of Tangent = 25 + 16 + 10 + 12 − 5 131 ​ ​
Simplify further:
Length of Tangent = 63 − 131 5 \text{Length of Tangent} = \sqrt{63 - \frac{131}{5}} Length of Tangent = 63 − 5 131 ​ ​
Now, to combine the terms under the square root:
63 = 315 5 63 = \frac{315}{5} 63 = 5 315 ​
Thus:
Length of Tangent = 315 − 131 5 = 184 5 \text{Length of Tangent} = \sqrt{\frac{315 - 131}{5}} = \sqrt{\frac{184}{5}} Length of Tangent = 5 315 − 131 ​ ​ = 5 184 ​ ​
This is the exact length of the tangent.
Formula for Length of Tangent :
Length of Tangent = x 1 2 + y 1 2 − 2 g x 1 − 2 f y 1 + c \text{Length of Tangent} = \sqrt{x_1^2 + y_1^2 - 2gx_1 - 2fy_1 + c} Length of Tangent = x 1 2 ​ + y 1 2 ​ − 2 g x 1 ​ − 2 f y 1 ​ + c ​
Standard form of a circle :
x 2 + y 2 + 2 g x + 2 f y + c = 0 x^2 + y^2 + 2gx + 2fy + c = 0 x 2 + y 2 + 2 gx + 2 f y + c = 0
Summary of Steps
Write the given circle equation in the standard form by dividing through by 5.
Identify the values of g g g , f f f , and c c c .
Apply the formula for the length of the tangent using the given point ( − 5 , 4 ) (-5, 4) ( − 5 , 4 ) .
Simplify the expression step by step.
Final result:
Length of Tangent = 184 5 \text{Length of Tangent} = \sqrt{\frac{184}{5}} Length of Tangent = 5 184 ​ ​