Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.4 Q-1

Question Statement

Find the focus, vertex, and direction of the parabola for the given equations, and sketch their graphs.


Background and Explanation

This problem focuses on analyzing and graphing parabolas. A parabola is defined as the set of all points equidistant from a point called the focus and a line called the directrix. Parabolas can be oriented in different directions, depending on their equations. The standard forms are:

  1. y2=4axy^2 = 4ax (opens right), y2=βˆ’4axy^2 = -4ax (opens left)
  2. x2=4ayx^2 = 4ay (opens upward), x2=βˆ’4ayx^2 = -4ay (opens downward)

To solve these problems, we compare the given equations with the standard forms, extract relevant parameters (e.g., aa), determine key features (focus, vertex, directrix), and then sketch the graphs.


Solution


i. y2=8xy^2 = 8x

  • Compare with y2=4axy^2 = 4ax, so:
4a=8β€…β€ŠβŸΉβ€…β€Ša=2 4a = 8 \implies a = 2
  • Focus: (a,0)=(2,0)(a, 0) = (2, 0)
  • Vertex: (0,0)(0, 0)
  • Directrix: x=βˆ’a=βˆ’2x = -a = -2
  • Axis: Along the xx-axis.

Diagram Placeholder


ii. x2=βˆ’16yx^2 = -16y

  • Compare with x2=βˆ’4ayx^2 = -4ay, so:
4a=16β€…β€ŠβŸΉβ€…β€Ša=4 4a = 16 \implies a = 4
  • Focus: (0,βˆ’4)(0, -4)
  • Vertex: (0,0)(0, 0)
  • Directrix: y=4y = 4
  • Axis: Along the yy-axis.

Diagram Placeholder


iii. x2=5yx^2 = 5y

  • Compare with x2=4ayx^2 = 4ay, so:
4a=5β€…β€ŠβŸΉβ€…β€Ša=54 4a = 5 \implies a = \frac{5}{4}
  • Focus: (0,54)\left( 0, \frac{5}{4} \right)
  • Vertex: (0,0)(0, 0)
  • Directrix: y=βˆ’54y = -\frac{5}{4}
  • Axis: Along the yy-axis.

Diagram Placeholder


iv. y2=βˆ’12xy^2 = -12x

  • Compare with y2=βˆ’4axy^2 = -4ax, so:
4a=12β€…β€ŠβŸΉβ€…β€Ša=3 4a = 12 \implies a = 3
  • Focus: (βˆ’3,0)(-3, 0)
  • Vertex: (0,0)(0, 0)
  • Directrix: x=3x = 3
  • Axis: Along the xx-axis.

Diagram Placeholder


v. x2=4(yβˆ’1)x^2 = 4(y - 1)

  • Shift origin to (0,1)(0, 1), rewrite as:
x2=4y x^2 = 4y
  • Compare with x2=4ayx^2 = 4ay, so:
a=1 a = 1
  • Focus: (0,2)(0, 2)
  • Vertex: (0,1)(0, 1)
  • Directrix: y=0y = 0
  • Axis: Along the yy-axis.

Diagram Placeholder


vi. y2=βˆ’8(xβˆ’3)y^2 = -8(x - 3)

  • Shift origin to (3,0)(3, 0), rewrite as:
y2=βˆ’8x y^2 = -8x
  • Compare with y2=βˆ’4axy^2 = -4ax, so:
4a=8β€…β€ŠβŸΉβ€…β€Ša=2 4a = 8 \implies a = 2
  • Focus: (1,0)(1, 0)
  • Vertex: (3,0)(3, 0)
  • Directrix: x=5x = 5
  • Axis: Along the xx-axis.

Diagram Placeholder


vii. (xβˆ’1)2=8(y+2)(x - 1)^2 = 8(y + 2)

  • Shift origin to (1,βˆ’2)(1, -2), rewrite as:
x2=8y x^2 = 8y
  • Compare with x2=4ayx^2 = 4ay, so:
4a=8β€…β€ŠβŸΉβ€…β€Ša=2 4a = 8 \implies a = 2
  • Focus: (1,0)(1, 0)
  • Vertex: (1,βˆ’2)(1, -2)
  • Directrix: y=βˆ’4y = -4
  • Axis: Along the yy-axis.

Diagram Placeholder


viii. y=6x2βˆ’1y = 6x^2 - 1

  • Rewrite as:
x2=16(y+1) x^2 = \frac{1}{6}(y + 1)
  • Compare with x2=4ayx^2 = 4ay, so:
4a=16β€…β€ŠβŸΉβ€…β€Ša=124 4a = \frac{1}{6} \implies a = \frac{1}{24}
  • Focus: (0,βˆ’2324)\left(0, -\frac{23}{24}\right)
  • Vertex: (0,βˆ’1)(0, -1)
  • Directrix: y=βˆ’2524y = -\frac{25}{24}
  • Axis: Along the yy-axis.

Diagram Placeholder


ix. x+8βˆ’y2+2y=0x + 8 - y^2 + 2y = 0

  • Rewrite as:
(yβˆ’1)2=x+9 (y - 1)^2 = x + 9
  • Shift origin to (βˆ’9,1)(-9, 1), rewrite as:
y2=x y^2 = x
  • Compare with y2=4axy^2 = 4ax, so:
4a=1β€…β€ŠβŸΉβ€…β€Ša=14 4a = 1 \implies a = \frac{1}{4}
  • Focus: (βˆ’354,1)\left( -\frac{35}{4}, 1 \right)
  • Vertex: (βˆ’9,1)(-9, 1)
  • Directrix: x=βˆ’374x = -\frac{37}{4}
  • Axis: Along the xx-axis.

Diagram Placeholder


x. x2βˆ’4xβˆ’8y+4=0x^2 - 4x - 8y + 4 = 0

  • Rewrite as:
(xβˆ’2)2=8y (x - 2)^2 = 8y
  • Shift origin to (2,0)(2, 0), rewrite as:
x2=8y x^2 = 8y
  • Compare with x2=4ayx^2 = 4ay, so:
4a=8β€…β€ŠβŸΉβ€…β€Ša=2 4a = 8 \implies a = 2
  • Focus: (2,2)(2, 2)
  • Vertex: (2,0)(2, 0)
  • Directrix: y=βˆ’2y = -2
  • Axis: Along the yy-axis.

Diagram Placeholder


Key Formulas or Methods Used

  • Standard Form of Parabola:
y2=4axorx2=4ay y^2 = 4ax \quad \text{or} \quad x^2 = 4ay
  • Focus: Determined using aa value.
  • Vertex: The origin or the shifted origin.
  • Directrix: Line opposite the focus, located at x=βˆ’ax = -a or y=βˆ’ay = -a.

Summary of Steps

  1. Rewrite the equation to match the standard form of a parabola.
  2. Identify aa, focus, vertex, and directrix.
  3. Shift the origin if needed.
  4. Sketch the graph using the identified parameters.