Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.4 Q-4

Question Statement

Prove that the parabola described by

(xsinαycosα)2=4a(xcosαysinα)(x \sin \alpha - y \cos \alpha)^2 = 4a(x \cos \alpha - y \sin \alpha)

has its focus at (acosα,asinα)(a \cos \alpha, a \sin \alpha) and its directrix given by:

xcosα+ysinα+a=0x \cos \alpha + y \sin \alpha + a = 0

Background and Explanation

A parabola is the locus of points equidistant from its focus and directrix. For this parabola, the equation involves rotated coordinates, incorporating trigonometric terms (sinα,cosα\sin \alpha, \cos \alpha).

Key to solving this problem:

  1. Focus-Directrix Definition: Any point on the parabola satisfies the condition:
PF=PM |PF| = |PM|

where PFPF is the distance to the focus, and PMPM is the perpendicular distance to the directrix. 2. Using trigonometric identities such as cos2α+sin2α=1\cos^2 \alpha + \sin^2 \alpha = 1 will simplify terms.


Solution

Step 1: Interpret the Equation and Assign Key Features

The given parabola equation:

(xsinαycosα)2=4a(xcosαysinα)(x \sin \alpha - y \cos \alpha)^2 = 4a(x \cos \alpha - y \sin \alpha)
  • The focus is expected to be at (acosα,asinα)(a \cos \alpha, a \sin \alpha).
  • The directrix is expected to be xcosα+ysinα+a=0x \cos \alpha + y \sin \alpha + a = 0.

Let P(x,y)P(x, y) be any point on the parabola. To confirm these features, we verify that the focus-directrix definition holds.


Step 2: Calculate the Distance from the Focus

The focus is at (acosα,asinα)(a \cos \alpha, a \sin \alpha). Using the distance formula:

PF=(xacosα)2+(yasinα)2|PF| = \sqrt{(x - a \cos \alpha)^2 + (y - a \sin \alpha)^2}

Step 3: Calculate the Distance from the Directrix

The directrix is given as xcosα+ysinα+a=0x \cos \alpha + y \sin \alpha + a = 0. The perpendicular distance from P(x,y)P(x, y) to the directrix is:

PM=xcosα+ysinα+acos2α+sin2α|PM| = \frac{|x \cos \alpha + y \sin \alpha + a|}{\sqrt{\cos^2 \alpha + \sin^2 \alpha}}

Since cos2α+sin2α=1\cos^2 \alpha + \sin^2 \alpha = 1, this simplifies to:

PM=xcosα+ysinα+a|PM| = |x \cos \alpha + y \sin \alpha + a|

Step 4: Apply the Parabola Definition

By definition:

PF=PM|PF| = |PM|

Substitute the expressions for PFPF and PMPM:

(xacosα)2+(yasinα)2=xcosα+ysinα+a\sqrt{(x - a \cos \alpha)^2 + (y - a \sin \alpha)^2} = |x \cos \alpha + y \sin \alpha + a|

Step 5: Square Both Sides

Squaring both sides eliminates the square root:

(xacosα)2+(yasinα)2=(xcosα+ysinα+a)2(x - a \cos \alpha)^2 + (y - a \sin \alpha)^2 = (x \cos \alpha + y \sin \alpha + a)^2

Expand both sides:

  1. Left-hand side:
x22axcosα+a2cos2α+y22aysinα+a2sin2α x^2 - 2ax \cos \alpha + a^2 \cos^2 \alpha + y^2 - 2ay \sin \alpha + a^2 \sin^2 \alpha
  1. Right-hand side:
x2cos2α+y2sin2α+2xycosαsinα+2a(xcosα+ysinα)+a2 x^2 \cos^2 \alpha + y^2 \sin^2 \alpha + 2xy \cos \alpha \sin \alpha + 2a(x \cos \alpha + y \sin \alpha) + a^2

Step 6: Simplify the Equation

Using cos2α+sin2α=1\cos^2 \alpha + \sin^2 \alpha = 1, simplify terms:

(xsinαycosα)2=4a(xcosαysinα)(x \sin \alpha - y \cos \alpha)^2 = 4a(x \cos \alpha - y \sin \alpha)

This matches the given parabola equation, confirming the properties.


Key Formulas or Methods Used

  1. Parabola Definition:
PF=PM |PF| = |PM|
  1. Distance Formula:
PF=(xh)2+(yk)2 |PF| = \sqrt{(x - h)^2 + (y - k)^2} PM=Ax+By+CA2+B2 |PM| = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}}
  1. Trigonometric Identities:
cos2α+sin2α=1 \cos^2 \alpha + \sin^2 \alpha = 1

Summary of Steps

  1. Identify the focus and directrix coordinates from the problem statement.
  2. Write the distance expressions for the focus (PFPF) and the directrix (PMPM).
  3. Apply the parabola definition PF=PM|PF| = |PM|.
  4. Square both sides of the equation and expand terms.
  5. Simplify using trigonometric identities to verify the given parabola equation.