Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.5 Q-1

Question Statement

Find the equations of ellipses for the given data and sketch their graphs.


Background and Explanation

An ellipse is defined as the locus of all points such that the sum of their distances to two fixed points (foci) is constant. The standard form of the ellipse equation is:

  1. Horizontal Major Axis:
    x2a2+y2b2=1,,a>b\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, , a > b

  2. Vertical Major Axis:
    x2b2+y2a2=1,,a>b\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, , a > b

Here:

  • a is the semi-major axis,
  • b is the semi-minor axis,
  • c is the distance from the center to each focus,
  • Relationship: c2=a2βˆ’b2c^2 = a^2 - b^2.

The eccentricity ee is calculated as e=cae = \frac{c}{a}, where e<1e < 1.


Solution

1: Foci (Β±3,0)( \pm 3, 0), Minor Axis Length 10

Given:

  • Foci at (Β±3,0)(\pm 3, 0),
  • Minor axis length = 10, so b=5b = 5,
  • c=3c = 3.

We calculate a2a^2 using c2=a2βˆ’b2c^2 = a^2 - b^2:

c2=a2βˆ’b2β‡’32=a2βˆ’52β‡’9=a2βˆ’25β‡’a2=34.c^2 = a^2 - b^2 \quad \Rightarrow \quad 3^2 = a^2 - 5^2 \quad \Rightarrow \quad 9 = a^2 - 25 \quad \Rightarrow \quad a^2 = 34.

The equation of the ellipse is:

x234+y225=1\frac{x^2}{34} + \frac{y^2}{25} = 1

Sketch:
Placeholder for the diagram


2: Foci (0,βˆ’1)(0, -1) and (0,βˆ’5)(0, -5), Major Axis Length 6

Given:

  • Foci at (0,βˆ’1)(0, -1) and (0,βˆ’5)(0, -5),
  • Major axis length = 6, so a=3a = 3,
  • The center is (0,βˆ’3)(0, -3), and c=2c = 2.

We calculate b2b^2 using c2=a2βˆ’b2c^2 = a^2 - b^2:

c2=a2βˆ’b2β‡’22=32βˆ’b2β‡’4=9βˆ’b2β‡’b2=5.c^2 = a^2 - b^2 \quad \Rightarrow \quad 2^2 = 3^2 - b^2 \quad \Rightarrow \quad 4 = 9 - b^2 \quad \Rightarrow \quad b^2 = 5.

Since the major axis is vertical, the equation of the ellipse is:

x25+(y+3)29=1\frac{x^2}{5} + \frac{(y + 3)^2}{9} = 1

Sketch:
Placeholder for the diagram


3: Foci (βˆ’33,0)(-3\sqrt{3}, 0), Vertices (Β±6,0)( \pm 6, 0)

Given:

  • Foci at (βˆ’33,0)(-3\sqrt{3}, 0),
  • Vertices at (Β±6,0)( \pm 6, 0), so a=6a = 6.

Calculate cc and b2b^2:

c=33,c2=(33)2=27,c = 3\sqrt{3}, \quad c^2 = (3\sqrt{3})^2 = 27, c2=a2βˆ’b2β‡’27=36βˆ’b2β‡’b2=9.c^2 = a^2 - b^2 \quad \Rightarrow \quad 27 = 36 - b^2 \quad \Rightarrow \quad b^2 = 9.

The equation of the ellipse is:

x236+y29=1\frac{x^2}{36} + \frac{y^2}{9} = 1

Sketch:
Placeholder for the diagram


Key Formulas or Methods Used

  1. Relationship:
    c2=a2βˆ’b2c^2 = a^2 - b^2

  2. Horizontal Ellipse Equation:
    x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1

  3. Vertical Ellipse Equation:
    x2b2+y2a2=1\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1

  4. Eccentricity:
    e=cae = \frac{c}{a}


Summary of Steps

  1. Identify the type of ellipse (horizontal or vertical) based on the given data.
  2. Use c2=a2βˆ’b2c^2 = a^2 - b^2 to find the missing parameter.
  3. Substitute the values into the standard equation for the ellipse.
  4. Sketch the graph, marking key features like the center, foci, and vertices.