Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.5 Q-2

Question Statement

Find the center, foci, eccentricity, vertices, and directrices of the ellipses for the given equations.


Background and Explanation

An ellipse is a conic section defined as the set of points where the sum of distances to two fixed points (foci) is constant. The standard equations for ellipses are:

  1. Horizontal Major Axis:
    (xβˆ’h)2a2+(yβˆ’k)2b2=1,,a>b\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1, , a > b

  2. Vertical Major Axis:
    (xβˆ’h)2b2+(yβˆ’k)2a2=1,,a>b\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1, , a > b

Key parameters:

  • a: Semi-major axis
  • b: Semi-minor axis
  • c: Distance from center to foci, given by c2=a2βˆ’b2c^2 = a^2 - b^2
  • Eccentricity: e=cae = \frac{c}{a}, where 0<e<10 < e < 1

Solution

(i) x2+4y2=16x^2 + 4y^2 = 16

Step 1: Rewrite in standard form.
Divide through by 16:

x216+y24=1\frac{x^2}{16} + \frac{y^2}{4} = 1

Step 2: Identify key parameters.

  • Center: (0,0)(0, 0)
  • a2=16,,b2=4a^2 = 16, , b^2 = 4, so a=4,,b=2a = 4, , b = 2
  • c2=a2βˆ’b2=16βˆ’4=12c^2 = a^2 - b^2 = 16 - 4 = 12, so c=23c = 2\sqrt{3}

Step 3: Determine features.

  • Vertices: (Β±4,0)( \pm 4, 0 )
  • Co-vertices: (0,Β±2)( 0, \pm 2 )
  • Foci: (Β±23,0)( \pm 2\sqrt{3}, 0 )

Graph:
Placeholder for the diagram.


(ii) 9x2+y2=189x^2 + y^2 = 18

Step 1: Rewrite in standard form.
Divide through by 18:

x22+y218=1\frac{x^2}{2} + \frac{y^2}{18} = 1

Step 2: Identify key parameters.

  • Center: (0,0)(0, 0)
  • a2=18,,b2=2a^2 = 18, , b^2 = 2, so a=32,,b=2a = 3\sqrt{2}, , b = \sqrt{2}
  • c2=a2βˆ’b2=18βˆ’2=16c^2 = a^2 - b^2 = 18 - 2 = 16, so c=4c = 4

Step 3: Determine features.

  • Vertices: (0,Β±32)(0, \pm 3\sqrt{2})
  • Co-vertices: (Β±2,0)(\pm \sqrt{2}, 0)
  • Foci: (0,Β±4)(0, \pm 4)

Graph:
Placeholder for the diagram.


(iii) 25x2+9y2=22525x^2 + 9y^2 = 225

Step 1: Rewrite in standard form.
Divide through by 225:

x29+y225=1\frac{x^2}{9} + \frac{y^2}{25} = 1

Step 2: Identify key parameters.

  • Center: (0,0)(0, 0)
  • a2=25,,b2=9a^2 = 25, , b^2 = 9, so a=5,,b=3a = 5, , b = 3
  • c2=a2βˆ’b2=25βˆ’9=16c^2 = a^2 - b^2 = 25 - 9 = 16, so c=4c = 4

Step 3: Determine features.

  • Vertices: (0,Β±5)(0, \pm 5)
  • Co-vertices: (Β±3,0)(\pm 3, 0)
  • Foci: (0,Β±4)(0, \pm 4)

Graph:
Placeholder for the diagram.


(iv) (2xβˆ’1)24+(y+2)216=1\frac{(2x-1)^2}{4} + \frac{(y+2)^2}{16} = 1

Step 1: Identify the form.
Rewrite as:

(xβˆ’12)21+(y+2)216=1\frac{\left(x - \frac{1}{2}\right)^2}{1} + \frac{(y + 2)^2}{16} = 1

Step 2: Identify key parameters.

  • Center: (12,βˆ’2)\left(\frac{1}{2}, -2\right)
  • a2=16,,b2=1a^2 = 16, , b^2 = 1, so a=4,,b=1a = 4, , b = 1
  • c2=a2βˆ’b2=16βˆ’1=15c^2 = a^2 - b^2 = 16 - 1 = 15, so c=15c = \sqrt{15}

Step 3: Determine features.

  • Vertices: (12,βˆ’6)\left(\frac{1}{2}, -6\right) and (12,2)\left(\frac{1}{2}, 2\right)
  • Co-vertices: (βˆ’12,βˆ’2)\left(-\frac{1}{2}, -2\right) and (32,βˆ’2)\left(\frac{3}{2}, -2\right)
  • Foci: (12,βˆ’2Β±15)\left(\frac{1}{2}, -2 \pm \sqrt{15}\right)

Graph:
Placeholder for the diagram.


(v) x2+16x+4y2βˆ’16y+76=0x^2 + 16x + 4y^2 - 16y + 76 = 0

Step 1: Complete the square.
Rewrite as:

(x+8)2+4(yβˆ’2)2=4(x+8)^2 + 4(y-2)^2 = 4

Divide by 4:

(x+8)24+(yβˆ’2)21=1\frac{(x+8)^2}{4} + \frac{(y-2)^2}{1} = 1

Step 2: Identify key parameters.

  • Center: (βˆ’8,2)(-8, 2)
  • a2=4,,b2=1a^2 = 4, , b^2 = 1, so a=2,,b=1a = 2, , b = 1
  • c2=a2βˆ’b2=4βˆ’1=3c^2 = a^2 - b^2 = 4 - 1 = 3, so c=3c = \sqrt{3}

Step 3: Determine features.

  • Vertices: (βˆ’10,2)(-10, 2) and (βˆ’6,2)(-6, 2)
  • Co-vertices: (βˆ’8,1)(-8, 1) and (βˆ’8,3)(-8, 3)
  • Foci: (βˆ’8Β±3,2)(-8 \pm \sqrt{3}, 2)

Graph:
Placeholder for the diagram.


Key Formulas or Methods Used

  • Standard Form of Ellipse:
    Horizontal:
    (xβˆ’h)2a2+(yβˆ’k)2b2=1\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1
    Vertical:
    (xβˆ’h)2b2+(yβˆ’k)2a2=1\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1
  • Relation between axes: c2=a2βˆ’b2c^2 = a^2 - b^2
  • Eccentricity: e=cae = \frac{c}{a}

Summary of Steps

  1. Rewrite the given equation in standard form.
  2. Identify the center, major/minor axes, and lengths.
  3. Calculate cc using c2=a2βˆ’b2c^2 = a^2 - b^2.
  4. Determine vertices, co-vertices, and foci.
  5. Sketch the graph based on the calculated parameters.