π¨ This site is a work in progress. Exciting updates are coming soon!
6.5 Q-2
Question Statement
Find the center, foci, eccentricity, vertices, and directrices of the ellipses for the given equations.
Background and Explanation
An ellipse is a conic section defined as the set of points where the sum of distances to two fixed points (foci) is constant. The standard equations for ellipses are:
Horizontal Major Axis: a2(xβh)2β+b2(yβk)2β=1,,a>b
Vertical Major Axis: b2(xβh)2β+a2(yβk)2β=1,,a>b
Key parameters:
a: Semi-major axis
b: Semi-minor axis
c: Distance from center to foci, given by c2=a2βb2
Eccentricity: e=acβ, where 0<e<1
Solution
(i) x2+4y2=16
Step 1: Rewrite in standard form.
Divide through by 16:
16x2β+4y2β=1
Step 2: Identify key parameters.
Center: (0,0)
a2=16,,b2=4, so a=4,,b=2
c2=a2βb2=16β4=12, so c=23β
Step 3: Determine features.
Vertices: (Β±4,0)
Co-vertices: (0,Β±2)
Foci: (Β±23β,0)
Graph: Placeholder for the diagram.
(ii) 9x2+y2=18
Step 1: Rewrite in standard form.
Divide through by 18:
2x2β+18y2β=1
Step 2: Identify key parameters.
Center: (0,0)
a2=18,,b2=2, so a=32β,,b=2β
c2=a2βb2=18β2=16, so c=4
Step 3: Determine features.
Vertices: (0,Β±32β)
Co-vertices: (Β±2β,0)
Foci: (0,Β±4)
Graph: Placeholder for the diagram.
(iii) 25x2+9y2=225
Step 1: Rewrite in standard form.
Divide through by 225:
9x2β+25y2β=1
Step 2: Identify key parameters.
Center: (0,0)
a2=25,,b2=9, so a=5,,b=3
c2=a2βb2=25β9=16, so c=4
Step 3: Determine features.
Vertices: (0,Β±5)
Co-vertices: (Β±3,0)
Foci: (0,Β±4)
Graph: Placeholder for the diagram.
(iv) 4(2xβ1)2β+16(y+2)2β=1
Step 1: Identify the form.
Rewrite as:
1(xβ21β)2β+16(y+2)2β=1
Step 2: Identify key parameters.
Center: (21β,β2)
a2=16,,b2=1, so a=4,,b=1
c2=a2βb2=16β1=15, so c=15β
Step 3: Determine features.
Vertices: (21β,β6) and (21β,2)
Co-vertices: (β21β,β2) and (23β,β2)
Foci: (21β,β2Β±15β)
Graph: Placeholder for the diagram.
(v) x2+16x+4y2β16y+76=0
Step 1: Complete the square.
Rewrite as:
(x+8)2+4(yβ2)2=4
Divide by 4:
4(x+8)2β+1(yβ2)2β=1
Step 2: Identify key parameters.
Center: (β8,2)
a2=4,,b2=1, so a=2,,b=1
c2=a2βb2=4β1=3, so c=3β
Step 3: Determine features.
Vertices: (β10,2) and (β6,2)
Co-vertices: (β8,1) and (β8,3)
Foci: (β8Β±3β,2)
Graph: Placeholder for the diagram.
Key Formulas or Methods Used
Standard Form of Ellipse:
Horizontal: a2(xβh)2β+b2(yβk)2β=1
Vertical: b2(xβh)2β+a2(yβk)2β=1
Relation between axes: c2=a2βb2
Eccentricity: e=acβ
Summary of Steps
Rewrite the given equation in standard form.
Identify the center, major/minor axes, and lengths.
Calculate c using c2=a2βb2.
Determine vertices, co-vertices, and foci.
Sketch the graph based on the calculated parameters.