Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.5 Q-7

Question Statement

An asteroid orbits the sun in an elliptical path with the sun at one focus. The distance of the asteroid from the sun ranges from 17 million miles (closest approach) to 183 million miles (farthest distance). Write the equation of the asteroid’s orbit.


Background and Explanation

Elliptical orbits follow the standard equation of an ellipse:

x2a2+y2b2=1,\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,

where:

  • aa is the semi-major axis (half the total length of the major axis),
  • bb is the semi-minor axis,
  • cc is the distance from the center to the focus, and
  • ee is the eccentricity, given by e=cae = \frac{c}{a}.

For this problem:

  • The sun is at one focus of the ellipse.
  • The closest distance (perihelion) is a(1−e)=17a(1-e) = 17 million miles.
  • The farthest distance (aphelion) is a(1+e)=183a(1+e) = 183 million miles.

Solution

Step 1: Determine the semi-major axis (aa)

The total distance between the closest and farthest points is the major axis:

2a=183+17=200,million miles.2a = 183 + 17 = 200 , \text{million miles}.

Thus:

a=2002=100,million miles.a = \frac{200}{2} = 100 , \text{million miles}.

Step 2: Calculate the eccentricity (ee)

The distance from the focus to the closest approach is:

a(1−e)=17.a(1-e) = 17.

Substitute a=100a = 100:

100(1−e)=17⇒1−e=17100⇒e=1−0.17=0.83.100(1-e) = 17 \quad \Rightarrow \quad 1-e = \frac{17}{100} \quad \Rightarrow \quad e = 1 - 0.17 = 0.83.

Step 3: Calculate the semi-minor axis (bb)

Using the relation c=aec = ae, find cc:

c=100×0.83=83,million miles.c = 100 \times 0.83 = 83 , \text{million miles}.

Now, use c2=a2−b2c^2 = a^2 - b^2 to solve for b2b^2:

832=1002−b2⇒6889=10000−b2⇒b2=3111.83^2 = 100^2 - b^2 \quad \Rightarrow \quad 6889 = 10000 - b^2 \quad \Rightarrow \quad b^2 = 3111.

Step 4: Write the equation of the ellipse

Substitute a2=1002=10000a^2 = 100^2 = 10000 and b2=3111b^2 = 3111 into the standard equation:

x210000+y23111=1.\frac{x^2}{10000} + \frac{y^2}{3111} = 1.

Key Formulas or Methods Used

  1. Standard Ellipse Equation:
x2a2+y2b2=1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
  1. Eccentricity Relation:
e=ca e = \frac{c}{a}
  1. Focal Relation:
c2=a2−b2 c^2 = a^2 - b^2
  1. Closest and Farthest Distances:
Closest distance: a(1−e),Farthest distance: a(1+e). \text{Closest distance: } a(1-e), \quad \text{Farthest distance: } a(1+e).

Summary of Steps

  1. Calculate a=100a = 100 from the major axis length 2a=2002a = 200.
  2. Use the closest distance a(1−e)=17a(1-e) = 17 to find e=0.83e = 0.83.
  3. Solve for b2=3111b^2 = 3111 using c2=a2−b2c^2 = a^2 - b^2.
  4. Write the ellipse equation as:
x210000+y23111=1. \frac{x^2}{10000} + \frac{y^2}{3111} = 1.

Final Equation

x210000+y23111=1\frac{x^2}{10000} + \frac{y^2}{3111} = 1