Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.6 Q-1

Question Statement

Find the equations of the hyperbolas for the given conditions. Include all necessary steps, calculations, and sketches for clarity.


Background and Explanation

A hyperbola is a conic section defined as the locus of points where the absolute difference of distances to two fixed points (foci) is constant. The standard form of a hyperbola depends on the orientation of its transverse axis:

  • Horizontal: x2a2βˆ’y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
  • Vertical: y2a2βˆ’x2b2=1\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1

The key parameters are:

  • aa: Distance from the center to each vertex.
  • bb: Distance related to the conjugate axis.
  • cc: Distance from the center to each focus, related by c2=a2+b2c^2 = a^2 + b^2.

Solution

i. Given: Center (0,0)(0, 0), Focus (6,0)(6, 0), Vertex (4,0)(4, 0)

Steps:

  1. Identify parameters:
    • a=4a = 4, c=6c = 6.
    • Using c2=a2+b2c^2 = a^2 + b^2, calculate b2b^2:
b2=c2βˆ’a2=36βˆ’16=20 b^2 = c^2 - a^2 = 36 - 16 = 20
  1. Since the transverse axis is horizontal, the equation of the hyperbola is:
x216βˆ’y220=1 \frac{x^2}{16} - \frac{y^2}{20} = 1

ii. Given: Foci (Β±5,0)(\pm 5, 0), Vertex (3,0)(3, 0)

Steps:

  1. Identify parameters:
    • a=3a = 3, c=5c = 5.
    • Calculate b2b^2:
b2=c2βˆ’a2=25βˆ’9=16 b^2 = c^2 - a^2 = 25 - 9 = 16
  1. Transverse axis is horizontal; the equation of the hyperbola is:
x29βˆ’y216=1 \frac{x^2}{9} - \frac{y^2}{16} = 1

iii. Given: Foci (2+52,7)(2+5\sqrt{2}, 7) and (2βˆ’52,βˆ’7)(2-5\sqrt{2}, -7), 2a=102a = 10

Steps:

  1. Identify parameters:
    • a=5a = 5, c=52c = 5\sqrt{2}.
    • Calculate b2b^2:
b2=c2βˆ’a2=(52)2βˆ’25=50βˆ’25=25 b^2 = c^2 - a^2 = (5\sqrt{2})^2 - 25 = 50 - 25 = 25
  1. Since the transverse axis is horizontal, the equation is:
(xβˆ’2)225βˆ’(y+7)225=1 \frac{(x-2)^2}{25} - \frac{(y+7)^2}{25} = 1

iv. Given: Foci (0,Β±9)(0, \pm 9), Directrices y=Β±4y = \pm 4

Steps:

  1. Identify parameters:
    • c=9c = 9, ae=4\frac{a}{e} = 4, so e=ca=94e = \frac{c}{a} = \frac{9}{4} and a=4a = 4.
    • Calculate b2b^2:
b2=c2βˆ’a2=81βˆ’16=65 b^2 = c^2 - a^2 = 81 - 16 = 65
  1. Since the transverse axis is vertical, the equation is:
y236βˆ’x245=1 \frac{y^2}{36} - \frac{x^2}{45} = 1

v. Given: Center (2,2)(2, 2), Horizontal transverse axis of length 66, Eccentricity e=2e = 2

Steps:

  1. Identify parameters:
    • 2a=6β‡’a=32a = 6 \Rightarrow a = 3.
    • c=ae=6c = ae = 6.
    • Calculate b2b^2:
b2=c2βˆ’a2=36βˆ’9=27 b^2 = c^2 - a^2 = 36 - 9 = 27
  1. The equation of the hyperbola is:
(xβˆ’2)29βˆ’(yβˆ’2)227=1 \frac{(x-2)^2}{9} - \frac{(y-2)^2}{27} = 1

vi. Given: Vertices (2,Β±3)(2, \pm 3), Point on curve (0,5)(0, 5)

Steps:

  1. From the vertices:
    • 2a=6β‡’a=32a = 6 \Rightarrow a = 3, a2=9a^2 = 9.
  2. Substitute (x,y)=(0,5)(x, y) = (0, 5) into the general form:
529βˆ’4b2=1 \frac{5^2}{9} - \frac{4}{b^2} = 1

Solve for b2b^2:

259βˆ’4b2=1β‡’4b2=169β‡’b2=94 \frac{25}{9} - \frac{4}{b^2} = 1 \Rightarrow \frac{4}{b^2} = \frac{16}{9} \Rightarrow b^2 = \frac{9}{4}
  1. The equation is:
y29βˆ’(xβˆ’2)294=1 \frac{y^2}{9} - \frac{(x-2)^2}{\frac{9}{4}} = 1

vii. Given: Vertices (5,βˆ’2)(5, -2) and (5,4)(5, 4), Focus (5,βˆ’3)(5, -3)

Steps:

  1. Identify parameters:
    • Center (5,1)(5, 1) (midpoint of vertices), a=3a = 3, a2=9a^2 = 9.
    • c=4c = 4, c2=16c^2 = 16.
    • Calculate b2b^2:
b2=c2βˆ’a2=16βˆ’9=7 b^2 = c^2 - a^2 = 16 - 9 = 7
  1. The equation of the hyperbola is:
(yβˆ’1)29βˆ’(xβˆ’5)27=1 \frac{(y-1)^2}{9} - \frac{(x-5)^2}{7} = 1

Key Formulas or Methods Used

  1. c2=a2+b2c^2 = a^2 + b^2: Relates the distances aa, bb, and cc in a hyperbola.
  2. Horizontal hyperbola: x2a2βˆ’y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.
  3. Vertical hyperbola: y2a2βˆ’x2b2=1\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1.
  4. Center: Midpoint of the vertices.

Summary of Steps

  1. Identify aa, bb, and cc based on the given data.
  2. Calculate b2b^2 using c2=a2+b2c^2 = a^2 + b^2.
  3. Determine the orientation (horizontal or vertical) of the hyperbola.
  4. Write the equation in standard form.
  5. Verify with any additional data, such as a point on the curve.