Question Statement
Find the center, foci, eccentricity, vertices, and equations of the directrices for the given hyperbolas.
Background and Explanation
Hyperbolas are conic sections defined as the locus of points where the difference of distances to two fixed points (foci) is constant. In standard form:
x 2 a 2 β y 2 b 2 = 1 \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 a 2 x 2 β β b 2 y 2 β = 1
y 2 a 2 β x 2 b 2 = 1 \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 a 2 y 2 β β b 2 x 2 β = 1
Key parameters:
Vertices: ( Β± a , 0 ) (\pm a, 0) ( Β± a , 0 ) for horizontal, ( 0 , Β± a ) (0, \pm a) ( 0 , Β± a ) for vertical hyperbolas.
Foci: Points ( Β± c , 0 ) (\pm c, 0) ( Β± c , 0 ) or ( 0 , Β± c ) (0, \pm c) ( 0 , Β± c ) , where c 2 = a 2 + b 2 c^2 = a^2 + b^2 c 2 = a 2 + b 2 .
Directrices: Lines given by x = Β± a e x = \pm \frac{a}{e} x = Β± e a β or y = Β± a e y = \pm \frac{a}{e} y = Β± e a β , where e = c a e = \frac{c}{a} e = a c β is the eccentricity.
Solution
i. Given: x 2 β y 2 = 9 x^2 - y^2 = 9 x 2 β y 2 = 9
Steps:
Rewrite in standard form:
x 2 9 β y 2 9 = 1 \frac{x^2}{9} - \frac{y^2}{9} = 1 9 x 2 β β 9 y 2 β = 1
Here, a 2 = 9 a^2 = 9 a 2 = 9 , b 2 = 9 b^2 = 9 b 2 = 9 , so c 2 = a 2 + b 2 = 18 c^2 = a^2 + b^2 = 18 c 2 = a 2 + b 2 = 18 , and c = 18 = 3 2 c = \sqrt{18} = 3\sqrt{2} c = 18 β = 3 2 β .
Identify:
Center: ( 0 , 0 ) (0, 0) ( 0 , 0 )
Vertices: ( Β± 3 , 0 ) (\pm 3, 0) ( Β± 3 , 0 )
Foci: ( Β± 3 2 , 0 ) (\pm 3\sqrt{2}, 0) ( Β± 3 2 β , 0 )
Directrices: x = Β± 3 2 x = \pm \frac{3}{\sqrt{2}} x = Β± 2 β 3 β
ii. Given: x 2 4 β y 2 9 = 1 \frac{x^2}{4} - \frac{y^2}{9} = 1 4 x 2 β β 9 y 2 β = 1
Steps:
Identify parameters:
a 2 = 4 a^2 = 4 a 2 = 4 , b 2 = 9 b^2 = 9 b 2 = 9 , c 2 = a 2 + b 2 = 13 c^2 = a^2 + b^2 = 13 c 2 = a 2 + b 2 = 13 , c = 13 c = \sqrt{13} c = 13 β .
Identify:
Center: ( 0 , 0 ) (0, 0) ( 0 , 0 )
Vertices: ( Β± 2 , 0 ) (\pm 2, 0) ( Β± 2 , 0 )
Foci: ( Β± 13 , 0 ) (\pm \sqrt{13}, 0) ( Β± 13 β , 0 )
Directrices: x = Β± 2 13 x = \pm \frac{2}{\sqrt{13}} x = Β± 13 β 2 β
iii. Given: y 2 16 β x 2 9 = 1 \frac{y^2}{16} - \frac{x^2}{9} = 1 16 y 2 β β 9 x 2 β = 1
Steps:
Identify parameters:
a 2 = 16 a^2 = 16 a 2 = 16 , b 2 = 9 b^2 = 9 b 2 = 9 , c 2 = a 2 + b 2 = 25 c^2 = a^2 + b^2 = 25 c 2 = a 2 + b 2 = 25 , c = 5 c = 5 c = 5 .
Identify:
Center: ( 0 , 0 ) (0, 0) ( 0 , 0 )
Vertices: ( 0 , Β± 4 ) (0, \pm 4) ( 0 , Β± 4 )
Foci: ( 0 , Β± 5 ) (0, \pm 5) ( 0 , Β± 5 )
Directrices: y = Β± 4 5 y = \pm \frac{4}{5} y = Β± 5 4 β
iv. Given: y 2 4 β x 2 1 = 1 \frac{y^2}{4} - \frac{x^2}{1} = 1 4 y 2 β β 1 x 2 β = 1
Steps:
Identify parameters:
a 2 = 4 a^2 = 4 a 2 = 4 , b 2 = 1 b^2 = 1 b 2 = 1 , c 2 = a 2 + b 2 = 5 c^2 = a^2 + b^2 = 5 c 2 = a 2 + b 2 = 5 , c = 5 c = \sqrt{5} c = 5 β .
Identify:
Center: ( 0 , 0 ) (0, 0) ( 0 , 0 )
Vertices: ( 0 , Β± 2 ) (0, \pm 2) ( 0 , Β± 2 )
Foci: ( 0 , Β± 5 ) (0, \pm \sqrt{5}) ( 0 , Β± 5 β )
Directrices: y = Β± 2 5 y = \pm \frac{2}{\sqrt{5}} y = Β± 5 β 2 β
v. Given: ( x β 1 ) 2 2 β ( y β 1 ) 2 9 = 1 \frac{(x-1)^2}{2} - \frac{(y-1)^2}{9} = 1 2 ( x β 1 ) 2 β β 9 ( y β 1 ) 2 β = 1
Steps:
Shift center to ( 1 , 1 ) (1, 1) ( 1 , 1 ) :
Substitute X = x β 1 X = x-1 X = x β 1 , Y = y β 1 Y = y-1 Y = y β 1 :
X 2 2 β Y 2 9 = 1 \frac{X^2}{2} - \frac{Y^2}{9} = 1 2 X 2 β β 9 Y 2 β = 1
Here, a 2 = 2 a^2 = 2 a 2 = 2 , b 2 = 9 b^2 = 9 b 2 = 9 , c 2 = a 2 + b 2 = 11 c^2 = a^2 + b^2 = 11 c 2 = a 2 + b 2 = 11 , c = 11 c = \sqrt{11} c = 11 β .
Identify:
Center: ( 1 , 1 ) (1, 1) ( 1 , 1 )
Vertices: ( 1 Β± 2 , 1 ) (1 \pm \sqrt{2}, 1) ( 1 Β± 2 β , 1 )
Foci: ( 1 Β± 11 , 1 ) (1 \pm \sqrt{11}, 1) ( 1 Β± 11 β , 1 )
Directrices: x = 1 Β± 2 11 x = 1 \pm \frac{\sqrt{2}}{\sqrt{11}} x = 1 Β± 11 β 2 β β
vi. Given: ( y + 2 ) 2 9 β ( x β 2 ) 2 16 = 1 \frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1 9 ( y + 2 ) 2 β β 16 ( x β 2 ) 2 β = 1
Steps:
Shift center to ( 2 , β 2 ) (2, -2) ( 2 , β 2 ) :
Substitute X = x β 2 X = x-2 X = x β 2 , Y = y + 2 Y = y+2 Y = y + 2 :
Y 2 9 β X 2 16 = 1 \frac{Y^2}{9} - \frac{X^2}{16} = 1 9 Y 2 β β 16 X 2 β = 1
Here, a 2 = 9 a^2 = 9 a 2 = 9 , b 2 = 16 b^2 = 16 b 2 = 16 , c 2 = a 2 + b 2 = 25 c^2 = a^2 + b^2 = 25 c 2 = a 2 + b 2 = 25 , c = 5 c = 5 c = 5 .
Identify:
Center: ( 2 , β 2 ) (2, -2) ( 2 , β 2 )
Vertices: ( 2 , β 2 Β± 3 ) (2, -2 \pm 3) ( 2 , β 2 Β± 3 )
Foci: ( 2 , β 2 Β± 5 ) (2, -2 \pm 5) ( 2 , β 2 Β± 5 )
Directrices: y = β 2 Β± 3 5 y = -2 \pm \frac{3}{5} y = β 2 Β± 5 3 β
vii. Given: 9 x 2 β 12 x β y 2 β 2 y + 2 = 0 9x^2 - 12x - y^2 - 2y + 2 = 0 9 x 2 β 12 x β y 2 β 2 y + 2 = 0
Steps:
Rewrite in standard form:
9 ( x 2 β 4 3 x ) β ( y 2 + 2 y ) = β 2 9(x^2 - \frac{4}{3}x) - (y^2 + 2y) = -2 9 ( x 2 β 3 4 β x ) β ( y 2 + 2 y ) = β 2
9 ( x β 2 3 ) 2 β ( y + 1 ) 2 = 1 9(x - \frac{2}{3})^2 - (y + 1)^2 = 1 9 ( x β 3 2 β ) 2 β ( y + 1 ) 2 = 1
( x β 2 3 ) 2 1 9 β ( y + 1 ) 2 1 = 1 \frac{(x - \frac{2}{3})^2}{\frac{1}{9}} - \frac{(y + 1)^2}{1} = 1 9 1 β ( x β 3 2 β ) 2 β β 1 ( y + 1 ) 2 β = 1
Identify:
Center: ( 2 3 , β 1 ) (\frac{2}{3}, -1) ( 3 2 β , β 1 )
Vertices: ( 5 3 , β 1 ) , ( β 1 3 , β 1 ) (\frac{5}{3}, -1), (\frac{-1}{3}, -1) ( 3 5 β , β 1 ) , ( 3 β 1 β , β 1 )
Foci: ( 2 3 Β± 10 , β 1 ) (\frac{2}{3} \pm \sqrt{10}, -1) ( 3 2 β Β± 10 β , β 1 )
Directrices: x = 2 3 Β± 1 10 x = \frac{2}{3} \pm \frac{1}{\sqrt{10}} x = 3 2 β Β± 10 β 1 β
Relation of parameters: c 2 = a 2 + b 2 c^2 = a^2 + b^2 c 2 = a 2 + b 2
Equations of hyperbolas:
Horizontal: x 2 a 2 β y 2 b 2 = 1 \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 a 2 x 2 β β b 2 y 2 β = 1
Vertical: y 2 a 2 β x 2 b 2 = 1 \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 a 2 y 2 β β b 2 x 2 β = 1
Directrices: x = Β± a e x = \pm \frac{a}{e} x = Β± e a β or y = Β± a e y = \pm \frac{a}{e} y = Β± e a β
Summary of Steps
Rewrite the equation in standard form.
Identify key parameters: a 2 a^2 a 2 , b 2 b^2 b 2 , c 2 = a 2 + b 2 c^2 = a^2 + b^2 c 2 = a 2 + b 2 .
Determine:
Center
Vertices
Foci
Directrices
Verify orientation (horizontal or vertical) and construct the equation.