Skip to content
🚨 This site is a work in progress. Exciting updates are coming soon!

6.6 Q-2

Question Statement

Find the center, foci, eccentricity, vertices, and equations of the directrices for the given hyperbolas.


Background and Explanation

Hyperbolas are conic sections defined as the locus of points where the difference of distances to two fixed points (foci) is constant. In standard form:

  • Horizontal hyperbola:
x2a2βˆ’y2b2=1 \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
  • Vertical hyperbola:
y2a2βˆ’x2b2=1 \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1

Key parameters:

  • Vertices: (Β±a,0)(\pm a, 0) for horizontal, (0,Β±a)(0, \pm a) for vertical hyperbolas.
  • Foci: Points (Β±c,0)(\pm c, 0) or (0,Β±c)(0, \pm c), where c2=a2+b2c^2 = a^2 + b^2.
  • Directrices: Lines given by x=Β±aex = \pm \frac{a}{e} or y=Β±aey = \pm \frac{a}{e}, where e=cae = \frac{c}{a} is the eccentricity.

Solution

i. Given: x2βˆ’y2=9x^2 - y^2 = 9

Steps:

  1. Rewrite in standard form:
x29βˆ’y29=1 \frac{x^2}{9} - \frac{y^2}{9} = 1

Here, a2=9a^2 = 9, b2=9b^2 = 9, so c2=a2+b2=18c^2 = a^2 + b^2 = 18, and c=18=32c = \sqrt{18} = 3\sqrt{2}.

  1. Identify:
    • Center: (0,0)(0, 0)
    • Vertices: (Β±3,0)(\pm 3, 0)
    • Foci: (Β±32,0)(\pm 3\sqrt{2}, 0)
    • Directrices: x=Β±32x = \pm \frac{3}{\sqrt{2}}

ii. Given: x24βˆ’y29=1\frac{x^2}{4} - \frac{y^2}{9} = 1

Steps:

  1. Identify parameters:

    • a2=4a^2 = 4, b2=9b^2 = 9, c2=a2+b2=13c^2 = a^2 + b^2 = 13, c=13c = \sqrt{13}.
  2. Identify:

    • Center: (0,0)(0, 0)
    • Vertices: (Β±2,0)(\pm 2, 0)
    • Foci: (Β±13,0)(\pm \sqrt{13}, 0)
    • Directrices: x=Β±213x = \pm \frac{2}{\sqrt{13}}

iii. Given: y216βˆ’x29=1\frac{y^2}{16} - \frac{x^2}{9} = 1

Steps:

  1. Identify parameters:

    • a2=16a^2 = 16, b2=9b^2 = 9, c2=a2+b2=25c^2 = a^2 + b^2 = 25, c=5c = 5.
  2. Identify:

    • Center: (0,0)(0, 0)
    • Vertices: (0,Β±4)(0, \pm 4)
    • Foci: (0,Β±5)(0, \pm 5)
    • Directrices: y=Β±45y = \pm \frac{4}{5}

iv. Given: y24βˆ’x21=1\frac{y^2}{4} - \frac{x^2}{1} = 1

Steps:

  1. Identify parameters:

    • a2=4a^2 = 4, b2=1b^2 = 1, c2=a2+b2=5c^2 = a^2 + b^2 = 5, c=5c = \sqrt{5}.
  2. Identify:

    • Center: (0,0)(0, 0)
    • Vertices: (0,Β±2)(0, \pm 2)
    • Foci: (0,Β±5)(0, \pm \sqrt{5})
    • Directrices: y=Β±25y = \pm \frac{2}{\sqrt{5}}

v. Given: (xβˆ’1)22βˆ’(yβˆ’1)29=1\frac{(x-1)^2}{2} - \frac{(y-1)^2}{9} = 1

Steps:

  1. Shift center to (1,1)(1, 1):
    • Substitute X=xβˆ’1X = x-1, Y=yβˆ’1Y = y-1:
X22βˆ’Y29=1 \frac{X^2}{2} - \frac{Y^2}{9} = 1
  • Here, a2=2a^2 = 2, b2=9b^2 = 9, c2=a2+b2=11c^2 = a^2 + b^2 = 11, c=11c = \sqrt{11}.
  1. Identify:
    • Center: (1,1)(1, 1)
    • Vertices: (1Β±2,1)(1 \pm \sqrt{2}, 1)
    • Foci: (1Β±11,1)(1 \pm \sqrt{11}, 1)
    • Directrices: x=1Β±211x = 1 \pm \frac{\sqrt{2}}{\sqrt{11}}

vi. Given: (y+2)29βˆ’(xβˆ’2)216=1\frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1

Steps:

  1. Shift center to (2,βˆ’2)(2, -2):
    • Substitute X=xβˆ’2X = x-2, Y=y+2Y = y+2:
Y29βˆ’X216=1 \frac{Y^2}{9} - \frac{X^2}{16} = 1
  • Here, a2=9a^2 = 9, b2=16b^2 = 16, c2=a2+b2=25c^2 = a^2 + b^2 = 25, c=5c = 5.
  1. Identify:
    • Center: (2,βˆ’2)(2, -2)
    • Vertices: (2,βˆ’2Β±3)(2, -2 \pm 3)
    • Foci: (2,βˆ’2Β±5)(2, -2 \pm 5)
    • Directrices: y=βˆ’2Β±35y = -2 \pm \frac{3}{5}

vii. Given: 9x2βˆ’12xβˆ’y2βˆ’2y+2=09x^2 - 12x - y^2 - 2y + 2 = 0

Steps:

  1. Rewrite in standard form:
    • Complete the square:
9(x2βˆ’43x)βˆ’(y2+2y)=βˆ’2 9(x^2 - \frac{4}{3}x) - (y^2 + 2y) = -2 9(xβˆ’23)2βˆ’(y+1)2=1 9(x - \frac{2}{3})^2 - (y + 1)^2 = 1
  • Divide by 9:
(xβˆ’23)219βˆ’(y+1)21=1 \frac{(x - \frac{2}{3})^2}{\frac{1}{9}} - \frac{(y + 1)^2}{1} = 1
  1. Identify:
    • Center: (23,βˆ’1)(\frac{2}{3}, -1)
    • Vertices: (53,βˆ’1),(βˆ’13,βˆ’1)(\frac{5}{3}, -1), (\frac{-1}{3}, -1)
    • Foci: (23Β±10,βˆ’1)(\frac{2}{3} \pm \sqrt{10}, -1)
    • Directrices: x=23Β±110x = \frac{2}{3} \pm \frac{1}{\sqrt{10}}

Key Formulas or Methods Used

  1. Relation of parameters: c2=a2+b2c^2 = a^2 + b^2
  2. Equations of hyperbolas:
    • Horizontal: x2a2βˆ’y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
    • Vertical: y2a2βˆ’x2b2=1\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1
  3. Directrices: x=Β±aex = \pm \frac{a}{e} or y=Β±aey = \pm \frac{a}{e}

Summary of Steps

  1. Rewrite the equation in standard form.
  2. Identify key parameters: a2a^2, b2b^2, c2=a2+b2c^2 = a^2 + b^2.
  3. Determine:
    • Center
    • Vertices
    • Foci
    • Directrices
  4. Verify orientation (horizontal or vertical) and construct the equation.