Question Statement
Using the result from Problem 3, find the equation of a hyperbola where the foci are located at ( β 5 , β 5 ) (-5, -5) ( β 5 , β 5 ) and ( 5 , 5 ) (5, 5) ( 5 , 5 ) , and the vertices are at ( β 3 3 , β 3 2 ) (-3\sqrt{3}, -3\sqrt{2}) ( β 3 3 β , β 3 2 β ) and ( 3 3 , 3 2 ) (3\sqrt{3}, 3\sqrt{2}) ( 3 3 β , 3 2 β ) .
Background and Explanation
The equation of a hyperbola is determined by its foci and vertices. The general property of a hyperbola is:
β£ P F β£ β β£ P F β² β£ = 2 a , |PF| - |PF'| = 2a, β£ PF β£ β β£ P F β² β£ = 2 a ,
where P F PF PF and P F β² PF' P F β² represent the distances of a point P ( x , y ) P(x, y) P ( x , y ) on the hyperbola to the two foci F ( β c , β c ) F(-c, -c) F ( β c , β c ) and F β² ( c , c ) F'(c, c) F β² ( c , c ) , respectively. Using this relationship and the given geometric properties, we can derive the equation of the hyperbola.
Solution
Step 1: Determine the value of a a a from the vertices
The vertices of the hyperbola are ( β 3 3 , β 3 2 ) (-3\sqrt{3}, -3\sqrt{2}) ( β 3 3 β , β 3 2 β ) and ( 3 3 , 3 2 ) (3\sqrt{3}, 3\sqrt{2}) ( 3 3 β , 3 2 β ) . The distance between the vertices is equal to 2 a 2a 2 a :
2 a = ( 3 3 β ( β 3 3 ) ) 2 + ( 3 2 β ( β 3 2 ) ) 2 . 2a = \sqrt{(3\sqrt{3} - (-3\sqrt{3}))^2 + (3\sqrt{2} - (-3\sqrt{2}))^2}. 2 a = ( 3 3 β β ( β 3 3 β ) ) 2 + ( 3 2 β β ( β 3 2 β ) ) 2 β .
Simplifying:
2 a = ( 6 3 ) 2 + ( 6 2 ) 2 . 2a = \sqrt{(6\sqrt{3})^2 + (6\sqrt{2})^2}. 2 a = ( 6 3 β ) 2 + ( 6 2 β ) 2 β .
2 a = 72 + 72 = 144 = 12. 2a = \sqrt{72 + 72} = \sqrt{144} = 12. 2 a = 72 + 72 β = 144 β = 12.
Thus:
a = 6. a = 6. a = 6.
Step 2: Use the hyperbolic relationship to express the equation
The equation of the hyperbola is based on the relationship:
( x + 5 ) 2 + ( y + 5 ) 2 β ( x β 5 ) 2 + ( y β 5 ) 2 = 2 a . \sqrt{(x + 5)^2 + (y + 5)^2} - \sqrt{(x - 5)^2 + (y - 5)^2} = 2a. ( x + 5 ) 2 + ( y + 5 ) 2 β β ( x β 5 ) 2 + ( y β 5 ) 2 β = 2 a .
Substituting 2 a = 12 2a = 12 2 a = 12 , we have:
( x + 5 ) 2 + ( y + 5 ) 2 β ( x β 5 ) 2 + ( y β 5 ) 2 = 12. \sqrt{(x + 5)^2 + (y + 5)^2} - \sqrt{(x - 5)^2 + (y - 5)^2} = 12. ( x + 5 ) 2 + ( y + 5 ) 2 β β ( x β 5 ) 2 + ( y β 5 ) 2 β = 12.
Step 3: Square both sides
Squaring eliminates the square root:
( ( x + 5 ) 2 + ( y + 5 ) 2 β ( x β 5 ) 2 + ( y β 5 ) 2 ) 2 = 144. \left(\sqrt{(x + 5)^2 + (y + 5)^2} - \sqrt{(x - 5)^2 + (y - 5)^2}\right)^2 = 144. ( ( x + 5 ) 2 + ( y + 5 ) 2 β β ( x β 5 ) 2 + ( y β 5 ) 2 β ) 2 = 144.
Expand both sides:
( x + 5 ) 2 + ( y + 5 ) 2 + ( x β 5 ) 2 + ( y β 5 ) 2 β 2 ( ( x + 5 ) 2 + ( y + 5 ) 2 ) ( ( x β 5 ) 2 + ( y β 5 ) 2 ) = 144. (x + 5)^2 + (y + 5)^2 + (x - 5)^2 + (y - 5)^2 - 2\sqrt{((x + 5)^2 + (y + 5)^2)((x - 5)^2 + (y - 5)^2)} = 144. ( x + 5 ) 2 + ( y + 5 ) 2 + ( x β 5 ) 2 + ( y β 5 ) 2 β 2 (( x + 5 ) 2 + ( y + 5 ) 2 ) (( x β 5 ) 2 + ( y β 5 ) 2 ) β = 144.
Simplify:
2 x 2 + 2 y 2 + 100 β 2 ( ( x + 5 ) 2 + ( y + 5 ) 2 ) ( ( x β 5 ) 2 + ( y β 5 ) 2 ) = 144. 2x^2 + 2y^2 + 100 - 2\sqrt{((x + 5)^2 + (y + 5)^2)((x - 5)^2 + (y - 5)^2)} = 144. 2 x 2 + 2 y 2 + 100 β 2 (( x + 5 ) 2 + ( y + 5 ) 2 ) (( x β 5 ) 2 + ( y β 5 ) 2 ) β = 144.
Step 4: Isolate the square root and simplify further
Rearranging:
( ( x + 5 ) 2 + ( y + 5 ) 2 ) ( ( x β 5 ) 2 + ( y β 5 ) 2 ) = x 2 + y 2 + 50 β 72. \sqrt{((x + 5)^2 + (y + 5)^2)((x - 5)^2 + (y - 5)^2)} = x^2 + y^2 + 50 - 72. (( x + 5 ) 2 + ( y + 5 ) 2 ) (( x β 5 ) 2 + ( y β 5 ) 2 ) β = x 2 + y 2 + 50 β 72.
Simplify:
( ( x + 5 ) 2 + ( y + 5 ) 2 ) ( ( x β 5 ) 2 + ( y β 5 ) 2 ) = x 2 + y 2 β 22. \sqrt{((x + 5)^2 + (y + 5)^2)((x - 5)^2 + (y - 5)^2)} = x^2 + y^2 - 22. (( x + 5 ) 2 + ( y + 5 ) 2 ) (( x β 5 ) 2 + ( y β 5 ) 2 ) β = x 2 + y 2 β 22.
Step 5: Square again
Squaring again gives:
( ( x + 5 ) 2 + ( y + 5 ) 2 ) ( ( x β 5 ) 2 + ( y β 5 ) 2 ) = ( x 2 + y 2 β 22 ) 2 . ((x + 5)^2 + (y + 5)^2)((x - 5)^2 + (y - 5)^2) = (x^2 + y^2 - 22)^2. (( x + 5 ) 2 + ( y + 5 ) 2 ) (( x β 5 ) 2 + ( y β 5 ) 2 ) = ( x 2 + y 2 β 22 ) 2 .
Expand both sides and simplify (tedious expansion omitted for brevity). The result is:
11 x 2 + 11 y 2 β 50 x y + 5041 = 0. 11x^2 + 11y^2 - 50xy + 5041 = 0. 11 x 2 + 11 y 2 β 50 x y + 5041 = 0.
Hyperbolic Property :
β£ P F β£ β β£ P F β² β£ = 2 a . |PF| - |PF'| = 2a. β£ PF β£ β β£ P F β² β£ = 2 a .
Distance formula : Used to calculate the distance between vertices.
Squaring Technique : Applied twice to eliminate square roots and simplify the equation.
Final Hyperbolic Equation :
11 x 2 + 11 y 2 β 50 x y + 5041 = 0. 11x^2 + 11y^2 - 50xy + 5041 = 0. 11 x 2 + 11 y 2 β 50 x y + 5041 = 0.
Summary of Steps
Find a a a : Compute the distance between vertices to find 2 a = 12 2a = 12 2 a = 12 , thus a = 6 a = 6 a = 6 .
Write the hyperbolic relationship : Use the property of hyperbolas involving the foci and the constant difference.
Simplify : Square both sides twice to eliminate the square roots and simplify the resulting equation.
Final equation : The hyperbola is given by:
11 x 2 + 11 y 2 β 50 x y + 5041 = 0. 11x^2 + 11y^2 - 50xy + 5041 = 0. 11 x 2 + 11 y 2 β 50 x y + 5041 = 0.